SciELO - Scientific Electronic Library Online

 
vol.14 número1Producción de trehalosa a partir de levaduras no-convencionales índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Revista mexicana de ingeniería química

versão impressa ISSN 1665-2738

Rev. Mex. Ing. Quím vol.14 no.1 Ciudad de México Jan./Abr. 2015

 

Biotecnología

 

Production of calcium- and iron-binding peptides by probiotic strains of Bacillus subtilis, B. clausii and B. coagulans GBI-30

 

Producción de péptidos fijadores de calcio y hierro por cepas probióticas de Bacillus subtilis, B. clausii y B. coagulans GBI-30

 

A.I. Reyes-Méndez, C. Figueroa-Hernández, G. Melgar-Lalanne, H. Hernández-Sánchez,* G. Dávila-Ortiz, and C. Jiménez-Martínez

 

Departamento de Graduados e Investigación en Alimentos, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala, Col. Sto. Tomás, CP 11340, México, D.F. México. *Corresponding author. E-mail: hhernan1955@yahoo.com Tel. +(52 55) 5729-6000

 

Recibido 4 de Noviembre 2013
Aceptado 24 de Enero de 2014

 

Abstract

Some strains of Bacillus subtilis, B. clausii and B. coagulans are commercially used as probiotic bacteria and their proteolytic activity is well known. The aim of this work was to evaluate their capacity to produce calcium- and iron-binding peptides when grown in culture media with different nitrogen sources. The fermentation media included broths containing tryptic soy (TS), casein peptone (CP), soy peptone (SP), and a crude phycobiliprotein extract (CPE). Cell-free supernatants (CFS) were prepared from the fermented media after 24, 48 and 72 h of fermentation and, tested for degree of hydrolysis (DH). Calcium- and iron-binding activities were determined as well. When the inocula were prepared in a medium designed for the production of alkaline proteases (AP), the degree of hydrolysis and the mineral-binding activity in the CFS were higher. The best rerults for calcium-binding activity and DH were obtained when B. subtilis and B. coagulans grew in a CPE-containing medium. Analogous results were found for trie iron-binding activity; nevertheless, this bioactivity was also high for B. clausii when grown in broths containing TS-, CP- and, SP.

Keywords: bioactive peptides, Bacillus subtilis, Bacillus clausii, Bacillus coagulans, calcium-binding, iron-binding, proteolysis, spirulina.

 

Resumen

Algunas cepas de Bacillus subtilis, B. clausii y B. coagulans se utilizan comercialmente como probioticos y su actividad proteolítica es de sobra conocida. El objetivo de este trabajo fue la evaluation de estos microorganismos debido a su capacidad para producir peptidos fijadores de calcio y hierro cuando son cultivados en medios con diferentes fuentes de nitrógeno. Los medios para la fermentación incluyeron caldos con soya y triptona (ST), peptona de caseína (PC), peptona de soya (PS) y, un extracto crudo de ficobiliproteína (ECF). Se obtuvieron sobrenadantes libres de celulas (SLC) a partir de los caldos de fermentation y se determino el grado de hidrólisis (GH) y la bioactividad fijadora para calcio y hierro. El GH y la actividad fijadora de minerales fue mayor cuando se emplearon inoculos preparados a partir de un medio disenado para la production de proteasas alcalinas (AP). El mejor resultado para el GH y la bioactividad fijadora de calcio se obtuvo con B. subtilis y B. coagulans cultivados en caldo con ECF como fuente de nitrógeno. Se observaron resultados similares para la actividad fijadora de hierro, sin embargo, tambien se obtuvieron buenos resultados con B. clausii cuando se utilizaron para su crecimiento los caldos ST, PC y PS.

Palabras clave: péptidos bioactivos, Bacillus subtilis, Bacillus clausii, Bacillus coagulans, fijadores de calcio, fijadores de hierro, proteólisis, spirulina.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

References

Achouri, A., Zhang, W. and Shiying, X. (1998). Enzymatic hydrolysis of soy protein isolate and effect of succinylation on the funtional properties of resulting protein hydrolysates. Food Research International 31, 617-623.         [ Links ]

Adler, N. J. (1971). Determination of the degree of hydrolysis of food protein hydrolysates by trinitrobenzenesulfonic acid. Journal of Agricultural and Food Chemistry 27, 1256-1262.         [ Links ]

AOAC. (1995). Official Methods of Analysis of the Association of Official Analytical Chemists. 16th Ed. A.O.A.C Arlington, USA.         [ Links ]

Bass, J. K. and Chan, G. M. (2006). Calcium nutrition and metabolism during infancy. Nutrition 22, 1051-1066.         [ Links ]

Bao, X .L., Lv, Y., Yang, B. C., Ren, C. G. and Guo, S.T. (2001). Calcium-binding ability of soy protein hydrolysates. Chinese Chemical Letters 18, 1115-1118.         [ Links ]

Bao, X .L., Lv, Y., Yang, B. C., Ren, C. G. and Guo, S.T. (2008). A study of the solublecomplexes formed during calcium binding by soybean protein hydrolysates. Journal of Food Science 73, C111-C121.         [ Links ]

Bernardi Don, L. S., Pilosof, A. M. R. and Bartholomai, G. B. (1991). Enzymatic modification of soy protein concentrates by fungal and bacterial proteases. Journal of the American Oil Chemists Society 68, 102-105.         [ Links ]

Bouhallab, S., Cinga, V., Aít-Oukhatar, N., Bureau, F., Neuville, D., Arhan, P., Maubois, J. L. and Bougle, D. (2002). Influence of various phosphopeptides of caseins on iron absorption. Journal of Agricultural and Food Chemistry 50, 7121-7130.         [ Links ]

Charoenphun, N., Youravong, W. and Cheirsilp, B. (2013). Determination of reaction kinetics of hydrolysis of tilapia (Oreochromis niloticus) protein for manipulating production of bioactive peptides with antioxidant activity, angiotensin-I- converting enzyme inhibitory activity and Calcium-binding properties. International Journal of Food Science and Technology 48, 419-428.         [ Links ]

Chaud, M. V., Izumi, C., Nahaa,l Z., Shuhama, T., Bianchi, Mde L. and de Freitas, O. (2002). Iron derivatives from casein hydrolysates as a potential source in the treatment of iron deficiency. Journal of Agricultural and Food Chemistry 50, 871-877.         [ Links ]

Choi, D. W., Lee, J. H., Chun, H. H. and Song, K. B. (2012). Isolation of a calcium-binding peptide from bovine serum protein hydrolysates. Food Science and Biotechnology 21, 1663-1667.         [ Links ]

Choi, J., Sabikhi, L., Hassan, A. and Anand, S. (2012). Bioactive peptides in dairy products. International Journal of Dairy Technology 65,112.         [ Links ]

Cutting, S.M. (2011). Bacillus probiotics. Food Microbiology 28, 214-220.         [ Links ]

Dimitrov, Z. (2009). Characterization of bioactive peptides with calcium-binding activity released by specially designed cheese starter. Biotechnology & Biotechnological Equipment 23, 927-930.         [ Links ]

Figueroa, H. C., Cruz, G. A., Rodríguez, S. G., Gómez, R. L., García, G. M. and Jiménez, G. J. (2012). Calcium and Iron Binding Peptides Production by Lactococcus lactis subsp. cremoris NCFB 112. Revista Mexicana de Ingeniería Química 11, 259-267.         [ Links ]

González-Olivares, L. G., Jiménez-Guzmán, J., Cruz-Guerrero, A., Rodríguez-Serrano, G., Gómez-Ruiz, L. and García-Garibay, M. (2011). Bioactive peptides released by lactic acid bacteria in commercial fermented milks. Revista Mexicana de Ingeniería Química 10, 179-188.         [ Links ]

Hartree, E.F. (1912). Determination of protein: a modification of Lowry method that gives a linear photometric response. Analytical Biochemistry 48, 422-427.         [ Links ]

Horikoshi, K. (1911). Production of alkaline enzymes by alkalophilic microorganisms. Part I. Alkaline protease produced by Bacillus No. 221. Agricultural and Biological Chemistry 35, 1407-1414.         [ Links ]

Huang, G-R., Ren, Z-Y., Jiang, J-X., and Chen, W-W. (2012). Purification of a hepta-peptide with iron binding activity from shrimp processing by-products hydrolysates. Advanced Journal of Food Science and Technology 4, 207-212.         [ Links ]

Hwang, J., Shue, Y. and Chang, H.-M. (2001). Antioxidative activity of roasted and defatted peanut kernels. Food Research International 34, 639-647.         [ Links ]

Jung, W. K. and Kim, S. K. (2001). Calcium-binding peptide derived from pepsinolytic hydrolysates of hoki (Johnius belengerii) frame. European Food Research & Technology 224,763-767.         [ Links ]

Kim, S. Y., Peter, S. W. P. and Khee, C. R. (1990) Functional properties of proteolytic enzyme modified soy protein isolate. Journal of Agricultural and Food Chemistry 38, 651-656.         [ Links ]

Kim, S. B., Seo I. S., Khan M. A., Ki K. S., Nam M. S. and Kim H. S. (2001). Separation of iron-binding protein from whey through enzymatic hydrolysis. International Dairy Journal 17, 625-631.         [ Links ]

Kim, S.B., Seo I.S., Khan, M.A., Ki, K.S., Lee, W.S., Lee, H.J., Shin, H.S., and Kim, H.S. (2007). Enzymatic hydrolysis of heated whey: iron-binding ability of peptides and antigenic protein fractions. Journal of Dairy Science 90, 4033-4042.         [ Links ]

Korhonen, H. (2009). Milk-derived bioactive peptides: from science to applications. Journal of Functional Foods 1, 177-187.         [ Links ]

Korhonen, H. and Pihlanto, A. (2006). Bioactive peptides: Production and functionality. International Dairy Journal 16, 945-960.         [ Links ]

Lee, S. and Song, K. 2009. Purification of an iron-binding nona-peptide from hydrolysates of porcine blood plasma protein. Process Biochemistry 44, 378-381.         [ Links ]

Mayo, B., Aleksandrzak-Piekarczyk, T., Fernaíndez, M., Kowalczyk, M., Álvarez-Martín, P. and Bardowski, J. (2010). Updates in the metabolism of lactic acid bacteria. In: Biotechnology of Lactic Acid Bacteria: Novel Applications, (F. Mozzi, R. R. Raya and G. M. Vignolo, eds.), Pp. 3-34 .Wiley-Blackwell, Oxford, UK.         [ Links ]

Moure, A., Domínguez, H., and Parajó, J. C. (2006). Antioxidant properties of ultrafiltration-recovered soy protein fractions from industrial effluents and their hydrolysates. Process Biochemistry 41, 447-456.         [ Links ]

Pandey, H.G., Bano, F. and Fatma, T. (2011). Studies on Anabaena sp. NCCU-9 with special reference to phycocyanin. Journal of Algal Biomass Utilization 2, 30-51.         [ Links ]

Pandey, J.P. and Tiwari, A. (2010). Optimization of biomass production of Spirulina maxima. Journal of Algal Biomass Utilization 1, 20-32.         [ Links ]

Park, O. and Allen, J. C. (1998). Preparation of phosphopeptides derived from αs-casein and β-casein using immobilized glutamic acid specific endopeptidase and characterization of their calcium binding. Journal of Dairy Science 81, 2858-2865.         [ Links ]

Patil, G., Chethana, S., Madhusudhan, M. C. and Raghavarao, K. S. (2008). Fractionation and purification of the phycobiliproteins from Spirulina platensis. Bioresource Technology 99, 7393-7396.         [ Links ]

Ramírez-Romero, G., Reyes-Velázquez, M. and Cruz-Guerrero, A. (2013). Study of nejayote as culture medium for probiotics and production of bacteriocins. Revista Mexicana de Ingeniería Química 12, 463-471.         [ Links ]

Salazar-Leyva, J.A., Lizardi-Mendoza, J., Ramírez-Suarez, J.C., Garcíía-Saínchez, G., Ezquerra-Brauer, J.M., Valenzuela-Soto, E.M., Carvallo-Ruiz, M.G., Lugo-Sánchez, M.E., and Pacheco-Aguilar, R. (2014). Utilization of chitin and chitosan based materials for protease immobilization: stabilization effects and applications. Revista Mexicana de Ingeniería Química 13, 129-150.         [ Links ]

Schägger, H. (2006). Tricine-SDS-PAGE. Nature Protocols 1, 16 - 22.         [ Links ]

Seyedeh, F.G.O., Fatemeh, T., Bagher, Y. and Fereshteh, E. (2001). Enhancement of alkaline protease production by Bacillus clausii using Taguchi experimental design. African Journal of Biotechnology 6, 2559-2564.         [ Links ]

Seyedeh, F.G.O., Fatemeh, T., Bagher, Y. and Fereshteh, E. (2008). Response surface optimization of medium composition for alkaline protease production by Bacillus clausii. Biochemical Engineering Journal 39, 31-42.         [ Links ]

Simeunović, J., Marković, S.B., Kovač, D.J., Mišan, A.Č., Mandić, A.I. and Svirčev, Z.B. (2012). Filamentous cyanobacteria from Vojvodina region as source of phycobiliprotein pigments as potential natural colorants. Food and Feed Research 39, 23-31.         [ Links ]

Srinivas, S. and Prakash, V. (2010). Bioactive peptides from bovine milk α-casein: isolation, characterization and multifunctional properties. International Journal of Peptide Research and Therapeutics 16, 1-15.         [ Links ]

Storcksdieck, G.B.S. and Hurrell, R. F. (2001). Iron-binding properties, amino acid composition, and structure of muscle tissue peptides from in vitro digestion of different meat sources. Journal of Food Science 72, S019-29.         [ Links ]

Sussman, F. and Weinstein, H. (1989). On the ion selectivity in Ca-binding proteins: The cyclo(-L-Pro-Gly-)3 peptide as a model. Proceedings of the National Academy of Sciences of the United States of America 86, 7880-7884.         [ Links ]

van Dijl, J. M. and Hecker, M. (2013). Bacillus subtilis: from soil bacterium to super-secreting cell factory. Microbial Cell Factories 12, 3.         [ Links ]

Vepachedu, V. R. and Setlow, P. 2004. Analysis of the germination of spores of Bacillus subtilis with temperature sensitive spo mutations in the spoVA operon. FEMS Microbiology Letters 239, 71-71.         [ Links ]

Wang, J., Su, Y., Jia, F. and Jin, H. (2013). Characterization of casein hydrolysates derived from enzymatic hydrolysis. Chemistry Central Journal 7, 1-8.         [ Links ]

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons