SciELO - Scientific Electronic Library Online

 
vol.13 número3Predicción del contenido de humedad en la pollinaza para estimar la producción de bioenergía a través de una red neuronal artificial índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de ingeniería química

versión impresa ISSN 1665-2738

Rev. Mex. Ing. Quím vol.13 no.3 Ciudad de México dic. 2014

 

Termodinámica

 

Exergetic analysis of a refrigeration system

 

Análisis exergético de un sistema de refrigeración

 

J. M. Belman-Flores*, A. Gallegos-Muñoz, J. M. Riesco-Ávila, A. Zaleta-Aguilar, J. M. Mendoza-Miranda

 

Department of Mechanical Engineering, Engineering Division, Campus Irapuato-Salamanca, University of Guanajuato, Salamanca, Gto., México * Autor para la correspondencia. E-mail: jfbelman@ugto.mx.

 

Received March 4, 2014.
Accepted October 4, 2014.

 

Abstract

This paper presents the exergy analysis of an experimental refrigeration system that operates with the refrigerant R134a. The research is based on analyzing the influence of six operational and controllable parameters of the experimental setup such as the compressor frequency of operation, the degree of static superheat, and the temperature of the secondary fluids (at the inlet of the evaporator and the condenser) on the exergy destruction. Thus, the results show that most exergy destruction is located in the condenser, followed by the compressor, the expansion valve and the evaporator. Furthermore, the highest exergetic efficiency is obtained by a decrease in the temperature of the secondary fluid inside the evaporator, and by an operation of the compressor at low speed. The efficiency of the compressor is also included in the analysis, which is a parameter that determines the exergy destruction of the largest component. Finally, a function of the exergetic efficiency is established in order to find those magnitudes of operational parameters that contribute to improving this efficiency.

Keywords: irreversibilities, vapor compression, exergy, R134a, controllable parameters, combined efficiency.

 

Resumen

En este trabajo se presenta el análisis exergético de un sistema experimental de refrigeración que trabaja con el refrigerante R134a. El trabajo desarrollado analiza la influencia de seis parámetros operacionales y controlables de la instalación experimental como: la frecuencia de operación del compresor, el grado de sobrecalentamiento estático y la temperatura de los fluidos secundarios (a la entrada del evaporador y condensador), sobre la destrucción de exergía. Así pues, los resultados muestran que la mayor destrucción de exergía es localizada en el condensador seguida por el compresor, la válvula de expansión y el evaporador. Por otro lado, la eficiencia exergética más alta es obtenida mediante un decremento de la temperatura del fluido secundario en el evaporador, además de un manejo bajo de la velocidad del compresor. También en el análisis se involucra la eficiencia combinada del compresor, la cual resulta en un parámetro que determina el componente con mayor destrucción de exergía. Asimismo, se establece una función de la eficiencia exergética para la búsqueda de aquellas magnitudes de los parámetros operacionales que contribuyan a mejorar dicha eficiencia.

Palabras clave: irreversibilidades, compresión de vapor, exergía, R134a, parámetros controlables, eficiencia combinada.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

References

Ahamed, J.U., Saidur, R. and Masjuki, H.H. (2011). A review on exergy analysis of vapor compression refrigeration system. Renewable and Sustainable Energy Reviews 15, 1593-1600.         [ Links ]

Aminyavari, M., Najafi, B., Shirazi, A. and Rinaldi, F. (2014). Exergetic, economic and environmental (3E) analyses, and multi-objective optimization of a CO2/NH3 cascade refrigeration system. Applied Thermal Engineering 65,42-50.         [ Links ]

Aprea, C., de Rossi F., Greco, A. and Renno, C. (2003). Refrigeration plant exergetic analysis varying the compressor capacity. International Journal of Energy Research 27, 653-669.         [ Links ]

Arora, A. and Kaushik, S.C. (2008). Theoretical analysis of a vapour compression refrigeration system with R502, R404A and R507A. International Journal of Refrigeration 31, 9981005.         [ Links ]

Belegundu, A.D. and Chandrupatla, T.R. (2011). Optimization concepts and applications in engineering. Second edition, New York, Prentice Hall.         [ Links ]

Belman, J.M., Navarro-Esbrí, J., Ginestar, D. and Milian, V. (2010). Steady-state model of a variable speed vapor compression system using R134a as a working fluid. International Journal of Energy Research 34, 933-945.         [ Links ]

Chen, C.K. and Su, Y.F. (2005). Exergetic efficiency for an irreversible Brayton refrigeration cycle. International Journal of Thermal Sciences 44, 303-310.         [ Links ]

Dinçer, I. and Kanoglu, M. (2010). Refrigeration Systems and Applications. John Wiley and Sons Inc., United Kingdom.         [ Links ]

Dubey, M., Rajput, S.P.S., Nag, P.K. and Misra, R.D. (2010). Energy analysis of a coupled power-refrigeration cycle. Journal of Power and Energy 224, 749-759.         [ Links ]

Fábrega, F.M., Rossi, J.S. and dí Angelo, J.V.H. (2010). Exergetic analysis of the refrigeration system in ethylene and propylene production process. Energy 35, 1224-1231.         [ Links ]

Kalaiselvam, S. and Saravan, R. (2009). Exergy Analysis of scroll compressors working with R22, R407C, and R417A as refrigerant for HVAC system. Thermal Science 13, 175-184.         [ Links ]

Kizilkan, O., Kabul, A., Yakut, A.K. (2010). Exergetic performance assessment ofa variable-speed R404a refrigeration system. International Journal of Energy Research 34, 463-475.         [ Links ]

Kotas, T.J. (1995). The Exergy Method of Thermal Plant Analysis. Malabar: Butterworths.         [ Links ]

Lugo-Leyte, R., Salazar-Pereyra, M., Ruíz-Ramírez, O.A., Zamora-Mata, J.M. and Torres-González, E.V. (2013). Exergoeconomic operation cost analysis to theoretical compression refrigeration cycle of HFC-134a. Revista Mexicana de Ingeniería Química 12, 361-370.         [ Links ]

Moran, M.J. and Shapiro, N.H. (2007). Fundamentals of Engineering Thermodynamics. 6th ed. Toronto, John Wiley and Sons, INC.         [ Links ]

Padilla, M., Revellin, R. and Bonjour, J. (2010). Exergy analysis of R413A as replacement of R12 in a domestic refrigeration system. Energy Conversion and Management 51, 2195-2201.         [ Links ]

Srinivasan, K., Lim, Y.K., Ho, J.C. and Wijeysundera, N.E. (2003). Exergetic analysis of carbon dioxide vapour compression refrigeration cycle using the new fundamental equation of state. Energy and Conversion Management 44, 3267-3278.         [ Links ]

Su, Y.F. and Chen, C.K. (2006). Exergetic efficiency optimization of a refrigeration system with multi-irreversibilities. Journal of Mechanical Engineering Science 220, 1179-1187.         [ Links ]

Tao, Y.B., He, Y.L. and Tao. W.Q. (2010). Exergetic analysis of transcritical CO2 residential air-conditioning system based on experimental data. Applied Energy 87, 3065-3072.         [ Links ]

Tsatsaronis, G. (1993). Thermoeconomic analysis and optimization of energy systems. Progress in Energy and Combustion Science 19, 227-257.         [ Links ]

Yumrutas,, R., Kunduz, R. and Kanoglu M. (2002). Exergy analysis of vapor compression refrigeration systems. Exergy, an International Journal 2, 266-272.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons