SciELO - Scientific Electronic Library Online

 
vol.13 número3Optimización de la sacarificación enzimática de paja de trigo en microescala a través de la metodología de superficie de respuestaEfecto del hidroperóxido de cumeno sobre la desulfuración oxidativa índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Revista mexicana de ingeniería química

versão impressa ISSN 1665-2738

Rev. Mex. Ing. Quím vol.13 no.3 Ciudad de México Dez. 2014

 

Biotecnología

 

Ethanol production by Zymomonas mobilis NRRL B-806 from enzymatic hydrolysates of Eucalyptus globulus

 

Producción de etanol a partir de hidrolizados enzimáticos de Eucalyptus globulus usando Zymomonas mobilis NRRL B-806

 

T.K. Morales-Martínez1, L.J. Rios-González1*, G. Aroca-Arcaya2 and J.A. Rodríguez-de la Garza1

 

1 Departamento de Biotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Blvd. V. Carranza, Z.C. 25280, Saltillo, Coahuila, México. * Corresponding author. E-mail: leopoldo.rios@uadec.edu.mx Tel.: +52 (844) 4155752, Fax: +52 (844) 4159534.

2 Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Gral. Cruz 34, Valparaíso, Chile.

 

Received March 3, 2014.
Accepted September 26, 2014.

 

Abstract

Ethanol production by Zymomonas mobilis NRRL-806 was assessed using different enzymatic hydrolysates from pretreated Eucalyptus globulus saw dust pulp. Results showed that when enzymatic hydrolysate containing 79.5 g L-1 of glucose and 8.81 g L-1 of acetic acid, a maximum ethanol yield of 92% and a productivity of 1.16 g L-1 h-1 were obtained, with a total of 37 g L-1 of ethanol after 27 hi. Acetic acid concentration present in enzymatic hydrolysates was the main factor that contributed to decrease ethanol yield and productivity, in the case of hydrolysate E, where acetic acid concentration was higher (12.8 g L-1), ethanol yield and productivity were 80% and 0.99 g L-1 h-1 respectively.

Keywords: Eucalyptus globulus, enzymatic hydrolysates, Zymomonas mobilis NRRL-806, ethanol yield, acetic acid.

 

Resumen

Se evaluó la producción de etanol por Zymomonas mobilis NRRL-806 a partir de diferentes hidrolizados enzimáticos de pulpa de aserrín de Eucalyptus globulus pretratada. Los resultados mostraron un máximo rendimiento de etanol de 92% y una productividad de 1.16 g L-1 h-1, con una concentración total de etanol de 37 g L-1 después de 27 h, cuando el hidrolizado enzimático contenía 79.5 g L-1 de glucosa y 8.81 g L-1 de ácido acético. La concentración de ácido acético presente en los hidrolizados enzimáticos fue el principal factor que contribuyó a la disminución del rendimiento y productividad de etanol, en el caso del hidrolizado E, en donde la concentración de ácido acético fue mayor (12.8 g L-1), el rendimiento y la productividad de etanol fueron de 80% y 0.99) g L-1 h-1 respectivamente.

Palabras clave: Eucalyptus globulus, hidrolizados enzimáticos, Zymomonas mobilis NRRL-806, rendimiento de etanol, ácido acético.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

References

Behera, S., Mohanty, R.C. and Ray, R.C. (2011). Ethanol production from mahula (Madhuca latifolia L.) flowers using free and immobilized (in Luffa cylindrical L. sponge discs) cells of Zymomonas mobilis MTCC 92. Annals of Microbiology 61, 469-474.         [ Links ]

da Silveira dos Santos, D., Camelo, A.C., Rodrigues, K.C.P., Carlos, L.C. and Pereira Jr, N. (2010). Ethanol Production from Sugarcane Bagasse by Zymomonas mobilis Using Simultaneous Saccharification and Fermentation (SSF) Process. Applied Biochemistry and Biotechnology 161, 93-105.         [ Links ]

Domínguez-Maldonado, J.A., García-Rodríguez, O., Aguilar-Vega, M., Smit, M. and Alzate-Gaviria, L. (2014). Reduction of cation Exchange capacity in a microbial fuel cell and its relation to the power density. Revista Mexicana de Ingeniería Química 13, 527-538.         [ Links ]

Kim, I.S., Barrow, K.D. and Rogers, P.L. (2000). Nuclear magnetic resonance studies of acetic acid inhibition of rec Zymomonas mobilis ZM4 (pZB5). Applied Biochemistry and Biotechnology 84-86, 357-370.         [ Links ]

Lawford, H.G., Rousseau, J.D. and Mc Millan, J.D. (1997). Optimization of seed production for a simultaneous saccharification cofermentation biomass-to-ethanol process using recombinant Zymomonas. Applied Biochemistry and Biotechnology 63-65, 269-286.         [ Links ]

Letti, L.A.J., Karp, S.G, Woiciechowski, A.L. and Soccol, C.R. (2012). Ethanol production from soybean molasses by Zymomonas mobilis. Biomass Bioenergy 44, 80-86.         [ Links ]

Liu, Y.K., Yang, Ch., Chuan, W., and Wei, Y.H. (2012). Producing bioethanol from cellulosic hydrolyzate via co-inmobilized cultivation strategy. Journal of Bioscience and Bioengineering 114, 198-203.         [ Links ]

Ma, H., Wang, Q., Qian, D., Gong, L., and Zang, W. (2009). The utilization of acid-tolerant bacteria on ethanol production from kitchen garbage. Renewable Energy 34, 1466-1470.         [ Links ]

Maiti, B., Rathore, A., Srivastava, S., Shekhawat, M., and Srivastava, P. (2011). Optimization of process parameters for ethanol production from sugar cane molasses by Zymomonas mobilis using response surface methodology and genetic algorithm. Applied Microbiology and Biotechnology 90, 385-395.         [ Links ]

Mukhopadhyay, M., Kuila, Tuli, T.A. and Rintu Banerjee D.K. (2011). Enzymatic depolymerization of Ricinus communis, a potential lignocellulosic for improved saccharification. Biomass and Bioenergy 35, 3584-3591.         [ Links ]

Parker, C., Peekhaus, N., Zhang, X. and Conway, T. (1997). Kinetics of sugar transport and phosphorylation influence glucose and fructose co-metabolism by Zymomonas mobilis. Applied and Environmental Microbiology 63, 35193525.         [ Links ]

Pereira, S.R., Ivanusa, S., Evtuguin, D.V., Serafim, L.S. and Xavier, A.M.R.B. (2012). Biological treatment of eucalypt spent sulphite liquors: A way to boost the production of second generation bioethanol. Bioresource Technology 103, 131-135.         [ Links ]

Rios González, L.J., Morales Martínez, T.K, Rodríguez de la Garza, J.A., Garza García, Y., Aroca Arcaya, G. and Seeger-Pfeiffer, M. (2012). Efectos inhibitorios de licores de pre-tratamiento de Eucaliptus globulus sobre la produccioín de bioetanol por Zymomonas mobilis NRRL B-806. Resultados de Investigacioín 2011-2012: Estancias Acadeímicas, (Plaza y Valdés, eds. México), pp. 79-88.         [ Links ]

Roberto, I.C., Mussato, S.I., and Rodrigues, R.C.L.B. (2003). Diluted-acid hydrolysis for optimization of xylose recovery from rice straw in a semi-pilot reactor. Industrial Crops and Products 17, 171-176.         [ Links ]

Rogers, P.L., Jeon, Y.J., Lee, K.J. and Lawford, H.G. (2007). Zymomonas mobilis for Fuel Ethanol and Higher Value Products. Advances in Biochemical Engineering/Biotecnology 108, 263-288.         [ Links ]

Rogers, P.L., Lee, K.J., Skotinich, M.L. and Tribe, D.E. (1982). Ethanol production by Zymomonas mobilis. Advances in Biochemical Engineering/Biotecnology 23, 27-84.         [ Links ]

Romaní, A., Garrote, G. and Parajó, J.C. (2012). Bioethanol production from auohydrolyzed Eucalyptus globulus by Simultaneous Saccharification and fermentation operating at high solids loading. Fuel 94, 305-312.         [ Links ]

Sarkar, N., Ghosh, S.K., Bannerjee, S. and Aikat, K. (2012). Bioethanol production agricultural wastes: An overview. Renewable Energy 37, 19-27.         [ Links ]

Starfelt, F., Daianova, L., Yan, J., Thorin, E. and Dotzauer, E. (2012). The impact of lignocellulosic etanol yields in polygeneration with district heating-a case study. Applied Energy 92, 791-799.         [ Links ]

Sun, Y. and Cheng, J. (2002). Hydrolysis of lignocellulosic material for ethanol production: a review. Bioresource Technology 96, 673-86.         [ Links ]

Swings, J., and De Ley, J. (1977). The biology of Zymomonas. Bacteriological Reviews 41, 1-41.         [ Links ]

Taherzadeh, M.J. and Karimi, K. (2007). Enzyme-based hydrolysis process for ethanol from lignocellulosic materials: a review. Bioresources 2, 707-738.         [ Links ]

Vaheed, H., Shojaosadati, S.A. and Galip, H. (2011). Evaluation and optimization of ethanol production from carob pod extract by Zymomonas mobilis using response surface methodology. Journal of Industrial Microbiology and Biotechnology 38, 101-111.         [ Links ]

Wirawan, F., Cheng, Ch., Kao, W., Lee, D., and Chang, J. (2012). Cellulosic ethanol production performance with SSF and SHF process using immobilized Zymomonas mobilis. Applied Energy 100, 19-26.         [ Links ]

Yanase, H., Nozaki, K. and Okamoto, K. (2005). Ethanol production from cellulosic materials by genetically engineered Zymomonas mobilis. Biotechnology Letters 27, 259-263.         [ Links ]

Zheng, Y., Pan, Z., Zhang, R. and Wang, D. (2009). Enzymatic saccharification of dilute acid pre treated saline crops for fermentable sugars production. Applied Energy 86, 2459-2465.         [ Links ]

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons