SciELO - Scientific Electronic Library Online

 
vol.13 número3Bioconversión de (+)-nootkaton por Botryodiplodia theobromae utilizando un reactor de biopelícula de membrana aireadaProducción de etanol a partir de hidrolizados enzimáticos de Eucalyptus globulus usando Zymomonas mobilis NRRL B-806 índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Revista mexicana de ingeniería química

versão impressa ISSN 1665-2738

Rev. Mex. Ing. Quím vol.13 no.3 Ciudad de México Dez. 2014

 

Biotecnología

 

Optimization of enzymatic saccharification of wheat straw in a micro-scale system by reponse surface methodology

 

Optimización de la sacarificación enzimática de paja de trigo en microescala a través de la metodología de superficie de respuesta

 

C. Molina1*, A. Sánchez2, A. Serafín-Muñoz3 y J. Folch-Mallol4

 

1 Universidad de Guanajuato-Guanajuato, Depto. de Ingeniería Química, Noria Alta s/n, 36050 Guanajuato, Gto., México. * Corresponding author. E-mail: carlosmolinaS@hotmail.com.

2 Centro de Investigación y de Estudios Avanzados del IPN, Unidad de Ingeniería Avanzada. Av. del Bosque 1145, Colonia el Bajío, Zapopan, 45019, Jalisco, México.

3 Universidad de Guanajuato-Guanajuato, Depto. de Ingeniería Ambiental, Av. Juárez 77, Zona Centro, 36000, Guanajuato, Gto., México.

4 Universidad Autónoma del Estado de Morelos, Centro de Investigación en Biotecnología, Cuernavaca, Morelos, México.

 

Received October 31, 2013.
Accepted July 2, 2014

 

Abstract

This paper studies the combined effects of temperature, pH and enzyme-substrate ratio (E/SR) on hydrolysis yield and specific reaction rate (SRV) in a microscale iystem in order to maximize enzymatic hydrolysis of pretreated wheat straw (WS). The WS was pretreated by alkaline -peroxide. Enzymatic complex Accellerase 1500TM was used for hydrolysis assays. Using response surface methodology, optimal parameter values were determined. A complete enzymatic kinetic of the hydrolysis reaction was obtained in 10 h. The optimal value of reducing sugars concentration (RSc), given by the model, was 5.97 mg/mL and the corresponding yield was 61.73%. The maximum yield for the WS hydrolysis was 61.73% and was achieved at a temperature of 52.0°C, pH 4.6, and a E/SR of 2.1 mL of Accellerase 1500TM/g of cellulose. The SRV was 4.80 U/mg and was obtained with the following conditions: pH 5.0, temperature of 48.5°C and an E/SR of 0.19 mL/g. A quadratic polynomial equation for predicting the hydrolysis yield was developed. The confirmation experiment showed a final value for RSc of 5.98 ± 0.81 mg/mL. This result indicates a % error of 0.33. The experimental results were in good agreement with predicted value.

Keywords: enzymatic saccharification, wheat straw, response surface methodology, microscale system.

 

Resumen

El presente trabajo estudia la hidrólisis de paja de trigo utilizando un sistema de microreacción. El Método de Superficie de Respuesta se utilizó para estudiar los efectos combinados de la temperatura, el pH y la relación enzima-sustrato (RE/S) sobre la hidrólisis enzimática y la velocidad específica de reacción VER. El sustrato fue paja de trigo pretratada de forma alcalino-oxidativa. El extracto enzimático utilizado fue Accellerase 1500TM. El tiempo de obtención de una cinética de la hidrólisis enzimática completa fue de 10 h. El valor óptimo de la concentración de azúcares reductores (CAR) arrojado por el modelo fue de 5.97 mg/mL y el rendimiento correspondiente fue de 61.73%. Estos valores fueron obtenidos con una temperatura de 52.0°C, pH 4.6 y una RE/S de 2.1 mL de Accellerase 1500/g de celulosa. La VER óptima fue de 4.80 U/mg y fue obtenida con una temperatura de 48.5°C, pH 5.0 y una RE/S de 0.19 mL/g. Se realizó un ensayo de confirmación en el que el valor predicho de CAR por el modelo fue de 5.96 mg/mL y el valor obtenido experimentalmente fue de 5.98 ± 0.81 mg/mL, indicando un error de 0.33%.

Palabras clave: hidrólisis enzimática, paja de trigo, metodología de superficie de respuesta, micro-escala, accellerase 1500TM.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Acknowledgements

C.M. acknowledges financial support from CONACYT and the University of Guanajuato in the form of PhD scholarships. Financial support from project SENER 150001 is also acknowledged.

 

References

Articles:

Alfaro, A., Rivera, A., Pérez, A., Yañez, R., García, J. C., and López, F. (2009) Integral valorization of two legumes by autohydrolysis and organosolv delignification. Bioresourse Technology 100, 440-445.         [ Links ]

Alvira, P., Negro, M. J., Sáez, F., & Ballesteros, M. (2010). Application of a microassay method to study enzymatic hydrolysis of pretreated wheat straw. Journal of Chemical Technology & Biotechnology 85, 1291-1297.         [ Links ]

Araque, E., Parra, C., Freer, J., Contreras, D., Rodriguez, J., Mendonca, R., Baeza, J. (2008). Evaluation of organosolv pretreatment for the conversion of Pinus radiate D. Don to ethanol. Enzyme Microbiology Technology 43, 214-219.         [ Links ]

Bailey MJ, Biely P and Poutanen K, (1991). Interlaboratory testing of methods for assay of xylanase activity. Journal of Biotechnology 23, 257-270.         [ Links ]

Benkun Q., Xiangrong C., Fei S., Yinhua W. (2009). Optimization of enzymatic hydrolysis of wheat straw pretreated by alkaline peroxide using response surface methodology. Industrial and Engineering Chemistry Research 48, 7346-7353.         [ Links ]

Berlin A, Maximenko V, Bra R, Kamg KY, Gilkes N and Saddler J, A rapid microassay to evaluate enzymatic hydrolysis of lignocellulosic substrates. Biotechnology and Bioengineering 93, 880-886 (2005).         [ Links ]

Brudecki, G., I. Cybulska, K. Rosentrater & J. Julson. (2012). Optimization of clean fractionation processing as a pre-treatment technology for prairie cordgrass. Bioresourse Technology 107, 494-504.         [ Links ]

Chen J., Zhang W., Zhang H., Zhang Q., Huang H. (2014). Screw extrude steam explosion: A promising pretreatment of corn stover to enhance enzymatic hydrolysis. Bioresource Technology 161, 230-235.         [ Links ]

Chundawat SPS, Balan V. and Dale BE, (2008) High-throughput microplate technique for enzymatic hydrolysis of lignocellulosic biomass. Biotechnology and Bioengineering 99, 1281-1294.         [ Links ]

Delgado R., Castro A.J., Vázquez M. A. (2009). Kinetic assessment of the enzymatic hydrolysis of potato (Solanum tuberosum). LWT-Food Science and Technology 42, 797-804.         [ Links ]

Fujii, T., X. Fang, H. Inoue, K. Murakami & S. Sawayama. (2009). Enzymatic hydrolyzing performance of Acremonium cellulolyticus and Trichoderma reesei against three lignocellulosic materials. Biotechnology for Biofuels 2, 24.         [ Links ]

Ghose TK, Measurement of cellulase activities. (1987). Pure and Applied Chemistry 59, 257-268.         [ Links ]

González-Rentería S., Soto-Cruz N., Rutiaga-Quiñones O., Medrano-Roldán, Rutiaga-Quiñones J. and López-Miranda J. (2011). Optimization of the enzymatic hydrolysis process of four straw bean varieties. Revista Mexicana de Ingeniería Química 10, 17-28.         [ Links ]

Grande, P. M. and de María P. D. (2012). Enzymatic hydrolysis of microcrystalline cellulose in concentrated seawater. Bioresource Technology 104, 799-802.         [ Links ]

Jeya, M., D. Kalyani, S. S. Dhiman, H. Kim, S. Woo, D. Kim & J. K. Lee. (2012). Saccharification of woody biomass using glycoside hydrolases from Stereum hirsutum. Bioresource Technology 117, 310-6.         [ Links ]

Karthika K., Arun A.B., Rekha P.D. (2012). Enzymatic hydrolysis and characterization of lignocellulosic biomass exposed to electron beam irradiation. Carbohydrate Polymers 90, 1038-1045.         [ Links ]

Kawai T., Nakazawa N., Ida H., Okada S., Tani J., Sumitani T., Kawaguchi W., Ogasawara Y., Kobayashi Y. (2012). Analysis of the saccharification capability of high-functional cellulase JN11 for various pretreated biomasses through a comparison with commercially available counterparts. Journal of Industrial Microbiology and Biotechnology 39, 1741-9.         [ Links ]

Kim ES, Lee HJ, Bang WG, Choi IG and Kim KH, Functional characterization of a bacterial expansin from Bacillus subtilis for enhanced enzymatic hydrolysis of cellulose. Biotechnology and Bioengineering 102, 1342-1353 (2009).         [ Links ]

Lequart C., Nuzillard J., Kurek B., Debeire P. (1999). Hydrolysis of wheat bran and straw by an endoxylanase: production and structural characterization of cinnamoyl-oligosaccharides. Carbohydrate Research 319, 102-111        [ Links ]

Li, Y., Cui, F., Liu, Z., Xu, Y., Zhao, H. (2007). Improvement of xylanase production by Penicillium oxalicum ZH-30 using response surface methodology. Enzyme and Microbial Technology 40, 1381.         [ Links ]

Lin, L., Yan R., Liu Y., & Jiang W. (2010). In-depth investigation of enzymatic hydrolysis of biomass wastes based on three major components: cellulose, hemicellulose and lignin. Bioresource Technology 101, 8217-23.         [ Links ]

Liu, Q., Cheng K., Zhang J., Li J., Wang G. (2010). Statistical optimization of recycled-paper enzymatic hydrolysis for simultaneous saccharification and fermentation via central composite design. Applied Biochemistry and Biotechnology 160, 604-12.         [ Links ]

Lowry, O., Rosebrough, N., Farr, A. Lewis and Randall, Rose J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 193, 265-275.         [ Links ]

M.G. Tabka, I. Herpoël-Gimbert, F. Monod, M. Asther, J.C. Sigoillot, Ma, H., Liu W., Chen X., Wu Y., Yu Z. (2009). Enhanced enzymatic saccharification of rice straw by microwave pretreatment. Bioresource Technology 100, 1279-84.         [ Links ]

Martín-Sampedro R., Eugenio M.E., García J.C., López F., Villar J.C. Díaz M.J. (2012). Steam explosion and enzymatic pre-treatments as an approach to improve the enzymatic hydrolysis of Eucalyptus globulus. Biomass and Bioenergy 42, 97-106.         [ Links ]

Micheletti M., and Lye G. J. (2006). Microscale bioprocess optimization. Current Opinion in Biotechnology 17, 611-618.         [ Links ]

Miller, G.L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry 31, 426-428.         [ Links ]

Mu, Y., Wang, G., Yu, H. Q. (2006). Response surface methodological analysis on biohydrogen production by enriched anaerobic cultures. Enzyme and Microbial Technology 38, 905.         [ Links ]

Mussatto, S. I., Fernandes, M., Milagres, A. M. F., Roberto, I. C. (2007). Effect of hemicellulose and lignin on enzymatic hydrolysis of cellulose from brewer's spent grain. Enzyme and Microbial Technology 43, 124.         [ Links ]

Patel, M., Bhatt, R. (1992). Optimization of the alkaline peroxide pretreatment for the delignification of rice straw and its applications. Journal of Chemical Technology and Biotechnology 53, 253.         [ Links ]

Poonam S. and Anoop S. (2011). Production of liquid biofuels from renewable resources. Progress in Energy and Combustion Science 37, 52-68.         [ Links ]

Primo E., Gil C.I., García F.J. (1995). Hydrolysis of corn-cob lignocellulosic residue from pentose preparation. Bioresource Technology 52, 1-4.         [ Links ]

Saha BC, Iten LB, Cotta MA, Wu YV. (2005). Dilute acid pretreatment enzymatic saccharifiaction and fermentation of wheat Straw to etanol. Process Biochemistry 40, 3693-700.         [ Links ]

Song, L., Siguier B., Dumon C., Bozonnet S., O'Donohue M. (2012). Engineering better biomass-degrading ability into a GH11 xylanase using a directed evolution strategy. Biotechnology for Biofuels 5, 3.         [ Links ]

Sun, R., Fang, J., Tomkinson, J. (2000). Delignification of rye straw using hydrogen peroxide. Industrial Crops and Products 12, 71.         [ Links ]

Sun, Y., Cheng, J. (2002). Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource Technology 83, 1.         [ Links ]

Toyokazu M., Seung-Hwan L., Seiichi I., Takashi E. (2012). Combined pretreatment using ozonolysis and wet-disk milling to improve enzymatic saccharification of Japanese cedar. Bioresource Technology 126, 182-186.         [ Links ]

Xu, Z., Wang, Q., Jiang, Z., Yang, X.-X., Ji, Y. (2007). Enzymatic hydrolysis of pretreated soybean straw. Biomass and Bioenergy 31, 162.         [ Links ]

Books chapters:

Fogler Scott. (2001). Fundamentos de reacciones enzimaticas, en Elementos de Ingeniería de las Reacciones Químicas. Prentice Hall, México. P. 383.         [ Links ]

Goering, H. K., Van Soest, P. J. (1970). Forage fiber analysis (apparatus, reagent, procedure and some applications). In Agricultural Handbook no. 379; US Department of Agriculture: Washington, DC, p 1.         [ Links ]

Haaland, P. D. (1989). Separating signals from the noise. In Experimental Design in Biotechnology. Marcel Dekker: New York, p. 61.         [ Links ]

Montgomery D.C. (2009). Response surface methods and designs, in: Design and Analysis of Experiments, 7th ed., Wiley, USA. pp. 417-480.         [ Links ]

Internet:

IEA Biofuels for transport-an international perspective. International Energy Agency (IEA) (2004) http://www.iea.org/textbase/nppdf/free/2004/biofuels2004.pdf        [ Links ]

Accellerse 1500TM. Product information (2014). http://accellerase.dupont.com/flleadmin/user_upload/live/accellerase/documents/DUP-00413-ProdSheeL1500_web.pdf        [ Links ]

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons