SciELO - Scientific Electronic Library Online

 
vol.13 issue3Fertigation of sweet sorghum (Sorghum bicolor L. Moench.) in laboratory and nursery assays with treated vinasses of hidrated ethanol of UASB reactorJatropha cinerea seed oil as a potential non-conventional feedstock for biodiesel produced by an ultrasonic process author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Revista mexicana de ingeniería química

Print version ISSN 1665-2738

Rev. Mex. Ing. Quím vol.13 n.3 Ciudad de México Dec. 2014

 

Biotecnología

 

Extracción de lípidos de Tetraselmis suecica: proceso asistido por ultrasonido y solventes

 

Tetraselmis suecica lipid extraction: ultrasonic and solvent aided process

 

S. Soto-León1, I. E. Zazueta-Patrón2, P. Piña-Valdez2, M. Nieves-Soto2, C. Reyes-Moreno1 e I. Contreras-Andrade1*

 

1 Programa Regional de Posgrado en Biotecnología, Facultad de Ciencias Químico Biológicas Universidad Autónoma de Sinaloa, Blvd. Américas y Josefa Ortiz de Domínguez, Ciudad Universitaria, Culiaccin, Sinaloa, C.P. 80010 * Autor para la correspondencia. E-mail: ica@uas.edu.mx.

2 Facultad de Ciencias del Mar Universidad Autónoma de Sinaloa, Paseo Claussen s/n, Mazatlán, Sinaloa.

 

Recibido 23 de Noviembre de 2013;
Aceptado 12 de Marzo de 2014.

 

Resumen

Se cultivó Tetraselmis suecica para estudiar la cinética de crecimiento en medios limitados por nitrógeno, lo cual permitió establecer los parámetros básicos de cinética microbiológica de los cultivos para la producción lipídica y biomasa residual. En este trabajo se propone una modificación al método tradicional de extracción de aceite por medio del uso de ultrasonido y solventes; este método incluye la metodología de la separación de clorofila de la fase oleosa. Se evaluaron los perfiles de ácidos grasos por medio de cromatografía de gases-masa (MS-CG) a partir del perfil de los metil ésteres de ácidos grasos (FAME) obtenidos por sonotranse sterificación, la composición de ácidos grasos observada fue: palmítico, 28.86; esteárico, 28.33; oleico, 16.79; linoleico, 11.71 y linolénico, 14.31%; composición que no se modificó por el efecto del estrés por nitrógeno. Finalmente, se utilizó la metodología de superficie de respuesta (RSM) para encontrar las mejores condiciones del proceso de extracción en función de la cantidad de solvente utilizado (X1), tiempo de sonicación (X2) y potencia acústica (X3), utilizando sonicación con pulsos y sin pulsos. Las mejores condiciones para el proceso fueron: X1=5 mL g-1, X2=6 h y X3=160 W, y un proceso sin pulsos; dichas condiciones aseguran una eficiencia de extracción de 94.98%.

Palabras clave: microalgas, biodiesel, ultrasonido, Tetraselmis suecica, perfil lipídico.

 

Abstract

The growth kinetics of Tetraselmis suecica cultured in nitrogen-limited media was evaluated; this allowed establishing the microbiological basic kinetic parameters of cultures to lipid and residual biomass production. This paper proposes a methodology to modify the traditional oil solvent-extraction by using high efficient ultrasound; this method includes separation process of chlorophyll from oil phase. Mass spectroscopy coupled to gas chromatography (MS-GC) was used to determine the fatty acid profile (FAP) from the final composition of the fatty acid methyl esters (FAME) obtained from oil sonotranse sterification. FAP was not altered by the effect of nitrogen stress, and it was observed that oil composition of Tetraselmis suecica was: palmitic acid, 28.86; stearic acid, 28.33; oleic acid, 16.79; linoleic acid, 11.71, and linolenic acid, 14.31 wt.%. Finally, the response surface methodology (RSM) was used to find the best operational conditions of the extraction process in terms of the quantity of solvent used (X1), sonication time (X2) and ultrasonic power (X3), with pulses and without pulses of sonication. The best extraction process conditions with continuous sonication occurred at X1=5 mL g-1, X2=6 h and X3=160 W, ensuring an extraction efficiency of 94.98%.

Keywords: microalgae, biodiesel, ultrasonic, Tetraselmis suecica.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Agradecimientos

El primer autor agradece el apoyo al Consejo Nacional de Ciencia y Tecnología (CONACYT) por la beca otorgada para cursar el doctorado en biotecnología dentro del Programa Regional de Biotecnología de la Universidad Autónoma de Sinaloa (UAS). También se agradece el apoyo económico a la UAS mediante el proyecto PROFAPI 084/2012 y al Programa para el Mejoramiento del Profesorado (PROMEP) por el proyecto -F-PROMEP-38/Rev-03 SEP-23-005.

 

Referencias

Adam, F., Abert-Vian, M., Peltier, G. y Chemat, F. (2012). 'Solvent-free' ultrasound-assisted extraction of lipids from fresh microalgae cells: A green, clean and scalable process. Bioresource Technology 114, 457-465.         [ Links ]

Alonso, D.L., Belarbi, E.H., Fernández-Sevilla, J.M., Rodríguez-Ruiz, J. y Grima, E.M. (2000). Acyl lipid composition variation related to culture age and nitrogen concentration in continuous culture of the microalga Phaeodactylum tricornutum. Phytochemistry 54, 461-471.         [ Links ]

Amaro, H.M., Guedes, A.C. y Malcata, F.X. (2011). Advances and perspectives in using microalgae to produce biodiesel. Applied Energy 88, 3402-3410.         [ Links ]

Andrich, G., Nesti, U., Venturi, F., Zinnai, A. y Fiorentini, R. (2005). Supercritical fluid extraction of bioactive lipids from the microalga Nannochloropsis sp. European Journal of Lipid Science and Technology 107, 381-386.         [ Links ]

Anzueto, M.A. (2008). Evaluación del cultivo continuo de tres especies microalgales. Tesis de doctorado. Centro de Investigation Científica y de Educacioín Superior de Ensenada (CICESE), México.         [ Links ]

AOAC. (1990). Methods of Analysis of Association of Official Analytical Chemists. 16th ed., Washington D.C.: Association of Official Analytical Chemists.         [ Links ]

Araujo, G.S., Matos, L.J.B., Fernandes, J.O., Cartaxo, S.J.M., Goncalves, L.R.B., Fernandes, F.A.N. y Farias, W.R.L. (2013). Extraction of lipids from microalgae by ultrasound application: Prospection of the optimal extraction method. Ultrasonics Sonochemistry 20, 95-98.         [ Links ]

Atkinson, D., Ciotti, B.J. y Montagnes, D.J.S. (2003). Protists decrease in size linearly with temperature: ca. 2.5% degrees C-1. Proceedings of the Royal Society of London Series B-Biological Sciences 270, 2605-2611.         [ Links ]

Azma, M., Mohamed, M.S., Mohamad, R., Rahim, R.A. y Ariff, A.B. (2011). Improvement of medium composition for heterotrophic cultivation of green microalgae, Tetraselmis suecica, using response surface methodology. Biochemical Engineering Journal 53, 187-195.         [ Links ]

Balasubramanian, R.K., Doan, T.T.Y. y Obbard, J.P. (2013). Factors affecting cellular lipid extraction from marine microalgae. Chemical Engineering Journal 215, 929-936.         [ Links ]

Bligh, E.G. y Dyer, W.J. (1959). A rapid method of total lipid extraction and Purification. Canadian Journal of Biochemistry and Physiology 37, 911-917.         [ Links ]

Bondioli, P., Della-Bella, L., Rivolta, G., Chini-Zittelli, G., Bassi, N., Rodolfi, L., Casini, D., Prussi, M., Chiaramonti, D. y Tredici, M.R. (2012). Oil production by the marine microalgae Nannochloropsis sp. F& M-M24 and Tetraselmis suecica F& M-M33. Bioresourc Technology 114, 567-572.         [ Links ]

Brown, T.M., Duan, P. y Savage, P.E. (2010). Hydrothermal Liquefaction and Gasification of Nannochloropsis sp. Energy & Fuels 24, 3639-3646.         [ Links ]

Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances 25, 294-306.         [ Links ]

Converti, A., Casazza, A.A., Ortiz, E.Y., Perego, P. y Del Borghi, M. (2009). Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chemical Engineering and Processing: Process Intensification 48, 1146-1151.         [ Links ]

De la Guardia, M. y Armenta, S. (2011). Greening sample treatments. En: Comprehensive Analytical Chemistry, pp. 87-120. Elsevier.         [ Links ]

De la Hoz, S.H., McCaffrey, W.C., Burrell, R.E. y Ben-Zvi, A. (2012). Optimization of microalgal productivity using an adaptive, nonlinear model based strategy. Bioresource Technology 104, 537-546.         [ Links ]

Du, Z., Li, Y., Wang, X., Wan, Y., Chen, Q., Wang, C., Lin, X., Liu, Y., Chen, P. y Ruan, R. (2011). Microwave-assisted pyrolysis of microalgae for biofuel production. Bioresource Technology 102, 4890-4896.         [ Links ]

Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A. y Smith F. (1956). Colorimetricmethodfor determination of sugars and related substances. Analytical Chemistry 28, 350-356.         [ Links ]

Gong, Y. y Jiang, M. (2011). Biodiesel production with microalgae as feedstock: from strains to biodiesel. Biotechnology Letters 33, 1269-1284.         [ Links ]

Guillard, R.R. y Ryther, J.H. (1962). Studies of marine planktonic diatoms Cyclotella nana hustedt and Detonula confervacea (cleve) gran. Canadian Journal of Microbiology 8, 229-234.         [ Links ]

Gutiérrez-Pulido, H. y De la Vara-Salazar, R. (2005). Análisis y Diseño de Experimentos. 1a Ed., Mcgraw-Hill Interamericana. México, DF. 414-530.         [ Links ]

Halim, R., Gladman, B., Danquah, M.K. y Webley, P.A. (2011). Oil extraction from microalgae for biodiesel production. Bioresource Technology 102, 178-185.         [ Links ]

Hemerick, G. (1973). Mass culture. En: Handbook of Phyological Methods, pp. 255-273. Cambridge University Press, London.         [ Links ]

Klok, A.J., Martens, D.E., Wijffels, R.H. y Lamers, P.P. (2013). Simultaneous growth and neutral lipid accumulation in microalgae. Bioresource Technology 134, 233-243.         [ Links ]

Lee, J.Y., Yoo, C., Jun, S.Y., Ahn, C.Y. y Oh, H.M. (2010). Comparison of several methods for effective lipid extraction from microalgae. Bioresource Technology 101, s75-s77.         [ Links ]

Lowry, O.H., Rosebrough, N.J., Farr, A.L. y Randall, R.J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 193, 265-275.         [ Links ]

Mason, T.J., Paniwnyk, L. y Lorimer, J.P. (1996). The use of ultrasound in food technology. Ultrasonics Sonochemistry 3, s253-s256.         [ Links ]

Mata, T.M., Martins, A.A. y Caetano, N.S. (2010). Microalgae for biodiesel production and other applications: a review. Renewable and Sustainable Energy Reviews 14, 217-32.         [ Links ]

McNichol, J., MacDougall, K.M., Melanson, J.E. y McGinn, P.J. (2012). Suitability of soxhlet extraction to quantify microalgal fatty acids as determined by comparison with in situ transesterification. Lipids 47, 195-207.         [ Links ]

Minowa, T., Yokoyama, S.Y., Kishimoto, M. y Okakura, T. (1995). Oil production from algal cells of Dunaliella tertiolecta by direct thermochemical liquefaction. Fuel 74, 1735-1738.         [ Links ]

Montagnes, D.J.S., Kimmance, S.A. y Atkinson D. (2003). Using Q10: Can growth rates increase linearly with temperature? Aquatic Microbial Ecology 32, 307-313.         [ Links ]

Montgomery, D.C. (1991). Design and Analysis of Experiments. 3a Ed., John Wiley and Sons. Inc. New York, NY, USA. 278-286.         [ Links ]

Pande, S.V., Khan R.P. y Venkitasubramanian, T.A. (1963). Microdetermination of lipids and serum total fatty acids. Anaytical Biochemistry 6, 415-423.         [ Links ]

Patil, P.D., Gude, V.G., Mannarswamy, A., Deng, S., Cooke, P., Munson-McGee, S., Rhodes, I., Lammers, P. y Nirmalakhandan, N. (2011). Optimization of direct conversion of wet algae to biodiesel under supercritical methanol conditions. Bioresource Technology 102, 118-122.         [ Links ]

Ranjan, A., Patil, C. y Moholkar, S.V. (2010). Mechanistic assessment of microalgal lipid extraction. Industrial & Engineering Chemistry Research 49, 2979-2985.         [ Links ]

Richmond, A. (2004). Handbook of Microalgal Culture: Biotechnology and Applied Phycology. Blackwell Science Ltd.         [ Links ]

Ríos, S.D., Castañeda, J., Torras, C., Farriol, X. y Salvadó, J. (2013). Lipid extraction methods from microalgal biomass harvested by two different paths: Screening studies toward biodiesel production. Bioresource Technology 133, 378-388.         [ Links ]

Ruiz, R.S., Martínez, C. y Vizcarra, M.G. (2011). Modeling conventional and ultrasound-assisted extraction of oil-containing materials. Revista Mexicana de Ingeniería Química 10, 387-399.         [ Links ]

Sánchez-García, D., Resendiz-Isidro, A., Villegas-Garrido, T.L., Flores-Ortiz, C.M., Chávez-Gómez, B. y Cristiani-Urbinadidier, E. (2013). Effect of nitrate on lipid production by T. suecica, M. contortum, and C. minutissima. Central European Journal of Biology 8, 578-590.         [ Links ]

Sander, K. y Murthy G.S. (2009). Enzymatic degradation of microalgal cell walls. paper no: 096054. 21-24 june. Reno, Nevada: American Society of Agricultural and Biological Engineers annual international meeting.         [ Links ]

Soto-Leon, S., Reyes-Moreno, C., Milán-Carrillo, J., Cuevas-Rodríguez, E., Sánchez-Castillo, M.A., Guerrero-Fajardo, C. y Contreras-Andrade, I. (2013). Capítulo 14 - Producción de biodiesel y glicerina a partir de Jatropha curcas. En: Cadena agroindustrial de Jatropha curcas: paquetes tecnológicos para el noroeste de México, Editores: Escoto, L.G., Contreras, I. y Angulo, M.A., Pp. 193-220, Publicia, Alemania.         [ Links ]

Tanzi, C.D., Vian, M.A. y Chemat, F. (2013). New procedure for extraction of algal lipids from wet biomass: A green clean and scalable process. Bioresource Technology 134, 271-275.         [ Links ]

Thomas, W.H., Tornabene, T.G. y Weissman, J. (1983). Screening for lipid yielding microalgae: activities for 1983. SERI/STR-231-2207. Disponible en http://www.nrel.gov/docs/legosti/old/2207.pdf.         [ Links ]

Thompson, P.A., Guo, M.X. y Harrison, P. (1992). Effects of variation in temperature on the biochemical composition of 8 species of marine-phytoplankton. Journal of Phycology 28, 481-488.         [ Links ]

Voltolina, D., Bückle-Ramírez, L.F. y Morales-Guerrero, E.L. (1989). Manual de Metodologías y Alternativas para el Cultivo de Microalgas. Centro de Investigación Científica y de educación Superior de Ensenada (CICESE), México.         [ Links ]

Wong, D.M. y Franz, A.K. (2013). A comparison of lipid storage in Phaeodactylum tricornutum and Tetraselmis suecica using laser scanning confocal microscopy. Journal of Microbiological Methods 95, 122-128.         [ Links ]

Yoo, C., Jun, S.Y., Lee, J.Y., Ahn, C.Y. y Oh, H.M. (2010). Selection of microalgae for lipid production under high levels carbon dioxide. Bioresource Technology 101, s71-s74.         [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License