SciELO - Scientific Electronic Library Online

 
vol.13 número3Efecto de la reología de la fase acuosa interna gelada en la degradación de color de extractos de muitle incorporados en emulsiones agua-en-aceite-en-aguaVariables de operación y composición para la preparación de nanoemulsiones de ácido betulínico índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de ingeniería química

versión impresa ISSN 1665-2738

Rev. Mex. Ing. Quím vol.13 no.3 Ciudad de México dic. 2014

 

Ingeniería de alimentos

 

Coupled Taguchi-RSM optimization of the conditions to emulsify α-tocopherol in an arabic gum-maltodextrin matrix by microfluidization

 

Optimización acoplada Taguchi-RSM de las condiciones de emulsificación por microfluidización de α-tocoferol en una matriz de goma arabiga y maltodextrina

 

A. Monroy-Villagrana, C. Cano-Sarmiento, L. Alamilla-Beltrán, H. Hernández-Sánchez, G.F. Gutiérrez-López*

 

* Departamento de Graduados e Investigación en Alimentos, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Carpio y Plan de Ayala s/n. Col. Santo Tomás. México, D. F. CP. 11340. Corresponding author. E-mail: gusfgl@gmail.com

 

Received May 18, 2014.
Accepted June 20, 2014.

 

Abstract

The effect of composition (Arabic gum (AG), maltodextrin (MD), surfactants, pH) and processing parameters (pressure and number of cycles of microfluidization) of α-tocopherol (AT) emulsions was studied via a coupled Taguchi-RMS optimization. Creaming index (CI), particle size (PS) and zeta potential (ζ) were selected as response variables. The estimated optimal conditions were found at GA of 40%, MD/surfactant mixture of 60%, 30% AT, pH of 4.9, P of 76 MPa and five cycles of microfluidization for a predicted CI of 0.5 % at 24 h with a PS of 384 nm. Under these conditions the experimental results were 4357 nm and 0.5 (CI. It was possible to minimize the CI by varying the concentration of GA and modifying processing conditions.

Keywords: emulsion, microfluidization, Taguchi method, response surface methodology.

 

Resumen

Se evaluó el efecto de la composición (goma Arábiga (GA), maltodextrina (MD), surfactantes, pH) y parámetros de procesamiento (presión y número de ciclos de microfluidización) de emulsiones de α-tocoferol vía una optimización acoplada Taguchi-RMS. El índice de separación (CI), tamaño de partícula (PS) y potencial zeta (ζ) fueron elegidos como las variables de respuesta. Las condiciones óptimas estimadas fueron a 40?%) de GA, 609o de MD/surfactante, 30% AT, pH 4.9, P de 76 MPa y 5 ciclos de microfludización con una predicción de CI igual a 0.5% a las 24 h con un tamaño de partícula de 384 nm. Bajo estas condiciones fue posible obtener experimentalmente emulsiones con un CI de 0.5% y un tamaño de partícula de 437 nm. Indicando que se puede minimizar la inestabilidad medida como CI, variando las concentraciones de GA y modificando las condiciones de procesamiento.

Palabras clave: emulsión, microfluidización, metodología de Taguchi, metodología de superficie de respuesta.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

References

Arherjee, B., Kuar, A. S., Mitra, S., & Misra, D. (2012). A sequentially integrated multicriteria optimization approach applied to laser transmission weld quality enhancement-a case study. The International Journal of Advanced Manufacturing Technology 65, 641-650.         [ Links ]

Alftren, J., Peñarrieta, J. M., Bergenstáhl, B., & Nilsson, L. (2012). Comparison of molecular and emulsifying properties of Arabic gum and mesquite gum using asymmetrical flow field-flow fractionation. Food Hydrocolloids 26, 54-62.         [ Links ]

Avaltroni, F., Bouquerand, P., & Normand, V. (2004). Maltodextrin molecular weight distribution influence on the glass transition temperature and viscosity in aqueous solutions. Carbohydrate Polymers 58, 323-334.         [ Links ]

Bouchemal, K., Briançon, S., Perrier, E., & Fessi, H. (2004). Nano-emulsion formulation using spontanenus emulsification: solvent, oil and surfartant optimisation. International Journal of Pharmaceutics 280, 241-51.         [ Links ]

Bouyer, E., Mekhloufi, G., Huang, N., Rosilio, V., & Agnely, F. (2013). -Lactoglobulin, Arabic gum, and xanthan gum for emulsifying sweet almond oil: Formulation and stabilization mechanisms of pharmaceutical emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects 433, 77-87.         [ Links ]

Bouyer, E., Mekhloufi, G., Le Potier, I., de Kerdaniel, T. D. F., Grossiord, J.-L., Rosilio, V., & Agnely, F. (2011). Stabilization mechanism of oil-inwater emulsions by -lactoglobulin and Arabic gum. Journal of Colloid and Interface Science 354, 467-77.         [ Links ]

Brösel, S. & Schubert, H. (1999). Investigations emulsification using a high-pressure homogenizer with an orifice valve. Chemical Engineering and Processing 38, 533-540.         [ Links ]

Cano-Sarmiento, C., Monroy-Villagrana, A., Alamilla-Beltrán, L., Hernández-Sánchez, H., Cornejo-Mazón, M., Téllez-Medina, D. I., Jiménez-Martínez, C., Gutiérrez-López, G. F. (2014). Micromorphometric characteristics of α-Tocopherol emulsions obtained by microfluidization. Revista Mexicana de Ingeniería Química 13, 201-212.         [ Links ]

Chaparro-Mercado, M. C., García-Ochoa, F., Hernández-Sánchez, H., Alamilla-Beltrán, L., Quintanilla-Carvajal, M. X., Cornejo-Mazón, M., Pedroza-Islas, R., Gutiérrez-López, G. F. (2012). Design of an interstitial structure for a grape seed oil emulsion by design of experiments and surface response. Revista Mexicana de Ingeniería Química 11, 11-21.         [ Links ]

Dickinson, E. (2003). Hydrocolloids at interfaces and the influence on the properties of dispersed systems. Food Hydrocolloids 17, 25-39.         [ Links ]

Gomes, J. F. P. S., Rocha, S., Pereira, M. C., Peres, I., Moreno, S., Toca-Herrera, J., & Coelho, M. A. N. (2010). Lipid/particle assemblies based on maltodextrin-Arabic gum core as bio-carriers. Colloids and Surfaces. B, Biointerfaces 76, 449-55.         [ Links ]

González-Rodríguez, M. L., Barros, L. B., Palma, J., González-Rodríguez, P. L., & Rabasco,A. M. (2007). Application of statistical experimental design to study the formulation variables influencing the coating process of lidocaine liposomes. International Journal of Pharmaceutics 337, 336-45.         [ Links ]

Heurtault, B. (2003). Physico-chemical stability of colloidal lipid particles. Biomaterials 24, 4283-4300.         [ Links ]

Jafari, S. M., Assadpoor, E., He, Y., & Bhandari, B. (2008). Re-coalescence of emulsion droplets during high-energy emulsification. Food Hydrocolloids 22, 1191-1202.         [ Links ]

Jafari, S. M., He, Y., & Bhandari, B. (2006). Optimization of nano-emulsions production by microfluidization. European Food Research and Technology 225, 733-741.         [ Links ]

Jafari, S. M., He, Y., & Bhandari, B. (2007). Eectiveness of encapsulating biopolymers to produce sub-micron emulsions by high energy emulsification techniques. Food Research International 40, 862-873.         [ Links ]

Kerstens, S., Murray, B. S., & Dickinson, E. (2006). Microstructure of beta-lactoglobulin-stabilized emulsions containing non-ionic surfactant and excess free protein: influence of heating. Journal of Colloid and Interface Science 296, 332-41.         [ Links ]

Klinkesorn, U., Sophanodora, P., Chinachoti, P., & McClements, D. (2004). Stability and rheology of corn oil-in-water emulsions containing maltodextrin. Food Research International 37, 851-859.         [ Links ]

León-López, L., Dávila-Ortiz, G., Jiménez-Martínez, C., & Hernández-Sánchez, H. (2013). Sequentially Integrated Optimization of the Conditions to Obtain a High-Protein and Low-Antinutritional Factors Protein Isolate from Edible Jatropha curcas Seed Cake. ISRN Biotechnology 2013, 1-7.         [ Links ]

Mahfoudhi, N., Sessa, M., Chouaibi, M., Ferrari, G., Donsì, F., & Hamdi, S. (2014). Assessment of emulsifying ability of almond gum in comparison with Arabic gum using response surface methodology. Food Hydrocolloids 37, 49-59.         [ Links ]

McClements, D. J. (2009). Biopolymers in Food Emulsions. Modern Biopolymer Science (First Edit., pp. 129-166).         [ Links ]

Mirhosseini, H., Tan, C. P., Hamid, N. S. A., & Yusof, S. (2008). Optimization of the contents of Arabic gum, xanthan gum and orange oil affecting turbidity, average particle size, polydispersity index and density in orange beverage emulsion. Food Hydrocolloids 22, 1212-1223.         [ Links ]

Panteloglou, A. G., Bell, A. E., & Ma, F. (2010). Eect of high-hydrostatic pressure and pH on the rheological properties of Arabic gum. Food Chemistry 122, 972-979.         [ Links ]

Perrier-Cornet, J. M., Marie, P., & Gervais, P. (2005). Comparison of emulsification efficiency of protein-stabilized oil-in-water emulsions using jet, high pressure and colloid mill homogenization. Journal of Food Engineering 66, 211-217.         [ Links ]

Qian, C., & McClements, D. J. (2011). Formation of nanoemulsions stabilized by model food-grade emulsifiers using high-pressure homogenization: Factors affecting particle size. Food Hydrocolloids 25, 1000-1008.         [ Links ]

Quintanilla-Carvajal, M. X., Meraz-Torres, L. S., Alamilla-Beltrán, L., Chanona-Pérez, J. J., Terrés-Rojas, E., Hernández-Sánchez, H., Jiménez-Aparicio, A. R., Gutiérrez-López, G. F. (2011). Morphometric characterization of spray-dried microcapsules before and after - tocopherol extraction. Revista Mexicana de Ingeniería Química 10, 301-312.         [ Links ]

Tang, C.-H., & Liu, F. (2013). Cold, gel-like soy protein emulsions by microfluidization: Emulsion characteristics, rheological and microstructural properties, and gelling mechanism. Food Hydrocolloids 30, 61-72.         [ Links ]

Villay, A., Lakkis de Filippis, F., Picton, L., Le Cerf, D., Vial, C., & Michaud, P. (2012). Comparison of polysaccharide degradations by dynamic high-pressure homogenization. Food Hydrocolloids 27, 278-286.         [ Links ]

Wang, X., Wang, Y., & Huang, Q. (2009). Enhancing Stability and Oral Bioavailability of Polyphenols Using Nanoemulsions. Micro/Nanoencapsulation of Active Food Ingredientes, (ACS Symposium Series, pp. 198-212).         [ Links ]

Yang, L., Nakhla, G., & Bassi, A. (2005). Electrokinetic dewatering of oily sludges. Journal of Hazardous Materials 125, 130-40.         [ Links ]

Ye, A., Edwards, P. J. B., Gilliland, J., Jameson, G. B., & Singh, H. (2012). Temperature-dependentcomplexation between sodium caseinate and Arabic gum. Food Hydrocolloids 26, 82-88.         [ Links ]

Yuan, Y., Gao, Y., Zhao, J., & Mao, L. (2008). Characterization and stability evaluation of -carotene nanoemulsions prepared by high pressure homogenization under various emulsifying conditions. Food Research International 41, 61-68.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons