SciELO - Scientific Electronic Library Online

 
vol.13 número2Simulación del proceso termoquímico sugerido para el aprovechamiento de los lodos residuales como fuente de energía alterna índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Revista mexicana de ingeniería química

versão impressa ISSN 1665-2738

Rev. Mex. Ing. Quím vol.13 no.2 Ciudad de México Ago. 2014

 

Artículos regulares/Simulación y control

 

Planteamiento de una métrica de la representación linealizada de un sistema no lineal. Aplicación para reactores (bio)químicos

 

Approach of a measurement of linearized representation of a nonlinear system. Application to (bio)chemical reactors

 

J. Carrillo-Ahumada1*, D.E. Páramo-Calderón2, A. Aparicio-Saguilán2, G.C. Rodríguez-Jimenes3 y M.A. García-Alvarado3

 

1 Instituto de Química Aplicada. Universidad del Papaloapan. Circuito Central 200, colonia Parque Industrial, Tuxtepec, Oax. 688301, México. *E-mail: jcarrillo@unpa.edu.mx; jesuscarrillo18@yahoo.com Tel. 01 (287) 8 75 92 40 Ext. 230

2 Instituto de Biotecnología. Universidad del Papaloapan. Circuito Central 200, colonia Parque Industrial, Tuxtepec, Oax. 68301, México.

3 Departamento de Ingeniería Química y Bioquímica. Instituto Tecnológico de Veracruz. Av. Miguel Ángel de Quevedo 2779, Veracruz, Ver. 91860, México.

 

Recibido 12 de Diciembre de 2013.
Aceptado 16 de Marzo de 2014.

 

Resumen

Se plantea un métrica para determinar la representación de un sistema linealizado con respecto al sistema no lineal. Esta métrica está basada en la expansión en series de Taylor de un sistema no lineal y fue aplicada para tres reactores (bio)químicos entre ellos el biorreactor de Cholette con multiplicidad de entradas, salidas y de estados estacionarios; un biorreactor con reacción enzimática y un reactor químico, aunque puede aplicarse para cualquier sistema no lineal. Se considera que el cociente de las matrices de primeras y segundas derivadas debe ser menor a la matriz de desviación de los valores nominales. Con este análisis, es posible determinar la influencia de cada parámetro en el sistema no lineal de estudio y su aplicación se encuentra en simulación y control.

Palabras clave: sistemas no lineales, linealización, series de Taylor, reactores (bio)químicos.

 

Abstract

A new criterion of measurement was proposed to determine the representation of a linearized system with respect to nonlinear system. This criterion is based on the Taylor series expansion of nonlinear system and was applied to three (bio)chemical reactors including the Cholette's bioreactor with multiple inputs, outputs and steady states; a reactor with enzymatic reaction and a chemical reactor. Current approach considers that matrix elements resulting from left division of matrices containing second-order and first-order partial derivatives should be smaller than deviations from the nominal values. With this analysis, is possible to determine the influence of each bifurcation parameter on the nonlinear system for simulation and control applications.

Keywords: nonlinear systems, linearization, Taylor series, (bio)chemical reactors.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Agradecimientos

Los autores agradecen al Programa de Mejoramiento del Profesorado (PROMEP) por el financiamiento parcial para esta investigación mediante el proyecto "Análisis de Estabilidad de Procesos Químicos y Alimentarios con Controladores Óptimo-Robustos" (PROMEP/103.5/12/7959; UNPA-PTC-119).

 

Referencias

Carrillo-Ahumada, J., Rodríguez-Jimenes, G.C. y García-Alvarado, M.A. (2011). Tuning optimal-robust linear MIMO controllers of chemical reactors by using Pareto optimality. Chemical Engineering Journal 174(1), 357-367.         [ Links ]

Chen, C.L., Wang, T.C. y Hsu, S.H. (2002). An LMI approach to H ∞ PI controller design Journal of Chemical Engineering of Japan 35(1), 83-93.         [ Links ]

Chidambaram, M. y Reddy, G.P. (1996). Nonlinear control of systems with input and output multiplicities. Computers & Chemical Engineering 20(3), 295-299.         [ Links ]

Conde-Mejia, C., Jiménez-Gutiérrez, A. y Elhalwagi, M. (2012). A comparison of pretreatment methods for bioethanol production from lignocellulosic materials. Process Safety and Environmental Protection 90(3), 189-202.         [ Links ]

Dhooge, A., Govaerts, W. y Kuznetsov, Y.A. (2003). MATCONT: A matlab package for numerical bifurcation analysis of ODEs. ACM Transactions on Mathematical Software 29(2), 141-164.         [ Links ]

Dieulot, J.Y. (2012). A productivity signal feedback controller for continuous bioreactos. Journal of Process Control 22, 1318-1324.         [ Links ]

Doedel, E., Wang, X. y Fairgrieve, T. (1986). AUTO: Software for continuation and bifurcation problems in ordinary differential equations. Technical Report, California Institute of Technology.         [ Links ]

Du, J., Song, C., Yao Y. y Li, P. (2013). Multilinear model decomposition of {MIMO} nonlinear systems and its implication for multilinear model-based control. Journal of Process Control 23(3), 271-281.         [ Links ]

Dutta, S., Chowdhury, R. y Bhattacharya, P. (2001). Parametric sensitivity in bioreactor: an analysis with reference to phenol degradation system. Chemical Engineering Science 56, 5103-5110.         [ Links ]

Gao, C., Li, K., Feng, E. y Xiu, Z. (2006). Nonlinear impulsive system of fed-batch culture in fermentative production and its properties. Chaos, Solitons and Fractals 28, 271-277.         [ Links ]

García-Alvarado, M.A. y Ruíz-López I.I. (2010) A design method for robust and quadratic optimal MIMO linear controllers. Chemical Engineering Science 65(11), 3431-3438.         [ Links ]

García-Alvarado, M.A., Ruiz-López, I.I. y Torres-Ramos, T. (2005). Tuning of multivariate PID controllers based on characteristic matrix eigenvalues, Lyapunov functions and robustness criteria. Chemical Engineering Science 60(4), 897-905.         [ Links ]

Herrera-López, E.J., Castillo-Toledo, B. y Femat, R. (2012). Fuzzy servo controller for CSTB with substrate inhibition kinetics. Journal of Process Control 22(6), 959-967.         [ Links ]

Ibarra-Junquera, V. y Rosu, H.C. (2007). PI-controlled bioreactor as a generalized Lienard system. Computers and Chemical Engineering 38, 225-231.         [ Links ]

Jhunjhunwala, M. K. y Chidambaram, M. (2001). PID controller tuning for unstable systems by optimization method. Chemical Engineering Communications 185, 91-113.         [ Links ]

Khalil, H.K. (1996). Nonlinear Systems. Editorial Macmillan Pub. Co. Estados Unidos de América.         [ Links ]

Liou, C.T. y Chien, Y.S. (1983). The effect of nonideal mixing on input multiplicity in a CSTR. Chemical Engineering Science 46(8), 2113-2116.         [ Links ]

Liu, C., (2013). Sensitivity analysis and parameter identification for a nonlinear time-delay system in microbial fed-batch process. Applied Mathematical Modelling, 38(4), 1449-1463.         [ Links ]

Lo, S.N. y Cholette, A. (1983). Multiplicity of conversion in a cascade of imperfectly stirred tank reactors. Chemical Engineering Science 38(1), 367-372.         [ Links ]

Márquez-Rubio, J.F., del-Muro-Cuéllar, B., Velasco-Villa, M. y Álvarez-Ramírez, J. (2010). Control basado en un esquema observador para sistemas de primer orden con retardo. Revista Mexicana de Ingeniería Química 9(1), 43-52.         [ Links ]

Namjoshi, A., Kienle, A. y Ramkrishna, D. (2003) Steady-state multiplicity in bioreactos: bifurcation analysis of cybernetic models. Chemical Engineering Science 58, 793-800.         [ Links ]

Normey-Rico, J.E. y Camacho, E.F. (2009) Unified approach for robust dead-time compensator design. Journal of Process Control 19, 38-47.         [ Links ]

Nuñez, S., De Battista, H., Garelli, F. y Vignoni, A. (2013). Second-order sliding mode observer for multiple kinetic rates estimation in bioprocesses. Control Engineering Practice 21(9), 1259-1265.         [ Links ]

Patnaik, P.R. (2005). Application of the Lyapunov exponent to detect noise-induce chaos in oscillating microbial cultures. Chaos, Solitons and Fractals 26, 759-765.         [ Links ]

Rajinikanth, V. y Latha, K. (2012). Tuning and retuning of PID controller for unstable systems using evolutionary algorithm. ISRN Chemical Engineering, 1-10.

Richter, H. y Stein, G. (2002). On Taylor series expansion for chaotic nonlinear systems. Chaos, Solitons and Fractals 13, 1783-1789.         [ Links ]

Romero, J.A. y Navarro, J.L. (2009). Improved efficiency in sensitivity calculations for bioreactor models. Computers and Chemical Engineering, 33, 903-910.         [ Links ]

Ruíz-López, I.I., Rodríguez Jimenes, G.C. y García-Alvarado, M.A. (2006). Robust MIMO PID controllers tuning based on complex/real ratio of the characteristic matrix eigenvalues Chemical Engineering Science 61(13), 4332-4340.         [ Links ]

Schaum, A., Alvarez, J. y Lopez-Arenas, T. (2013). Satured linear dynamic output-feedback control for a class of three state continuous biorreactos with inhibited kinetics. Journal of Process Control 23, 332-350.         [ Links ]

Sivaramakrishnan, S., Tangirala, A. K. y Chidambaram, M. (2008). Sliding mode controller for unstable systems. Chemical and Biochemical Engineering Quarterly 22(1), 41-47.         [ Links ]

Sree, R.P. y Chidambaram, M. (2002). Identification of unstable transfer model with a zero by optimization method. Journal of the Indian Institute of Science 82, 219-225.         [ Links ]

Sree, R.P. y Chidambaram, M. (2003a). Control sof unstable bioreactor with dominat unstable zero. Chemical and Biochemical Engineering Quarterly 17(2), 139-145.         [ Links ]

Sree, R.P. y Chidambaram, M. (2003b). A simple method of tuning PI controllers for unstable systems with zero. Chemical and Biochemical Engineering Quarterly 17(3), 207-212.         [ Links ]

Stavrinides, S.G., Banerjee, S., Suleyman, H. y Mehmet, O. (2013). Chaos and Complex Systems. Springer Berlin Heidelberg, 209-212.         [ Links ]

Vanavil, B., Harikumar, M.P. y Rao, A.S. (2014). Bifurcation analysis of two continuous bioreactors operated in series with recycle. Chemical Engineering Research, Artículo en prensa.

Varma, A., Morbidelli, M. y Wu, H., (2005). Parametric sensitivity in Chemical Systems. Cambridge University Press.         [ Links ]

Volcke, E.I.P., Sbarciog, M., Noldus, E.J.L., De Beats y Loccufier, M. (2010). Steady state multiplicity of two-step biological conversion systems with general kinetics. Mathematical Biosciences, 228, 160-170.         [ Links ]

Wang, H., Zhang, N., Qiu, T., Zhao, J., He, X. y Chen, B. (2013). A process design framework for considering the stability of steady state operating points and Hopf singularity point in chemical processes. Chemical Engineering Science, 99, 252-264.         [ Links ]

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons