SciELO - Scientific Electronic Library Online

 
vol.13 número2Identificación genética del bioánodo y biocátodo de una celda de electrolisis microbianaElección de parámetros de proceso mediante análisis estadístico para mejorar la producción de cantaxantina usando Dietzia maris NIT-D (Número de acceso: HM151403) índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Revista mexicana de ingeniería química

versão impressa ISSN 1665-2738

Rev. Mex. Ing. Quím vol.13 no.2 Ciudad de México Ago. 2014

 

Artículos regulares/Biotecnología

 

Identificación de β-galactosidasa, β-fructofuranosidasa y glicosil transferasa de Cellulomonas flavigena al crecer en diferentes fuentes de carbono

 

Identification of β-galactosidase, β-fructofuranosidase and glycosiltransferase enzymes from Cellulomonas flavigena when grown in several carbon sources

 

E. Solís-Badillo1, L. Mayorga-Reyes2, A. Azaola-Espinosa2*, A. Gutiérrez-Nava2

 

1 Maestría en Ciencias Agropecuarias. Universidad Autónoma Metropolitana-Xochimilco. Calzada del Hueso 1100, Col. Villa Quietud, Del. Coyoacán. C. P. 04960 México, D. F.

2 Dpto. de Sistemas Biológicos. Universidad Autónoma Metropolitana-Xochimilco. Calzada del Hueso 1100, Col. Villa Quietud, Del. Coyoacán. C. P. 04960 México, D. F. * Corresponding author. E-mail: azaola@correo.xoc.uam.mx Tel. 55-54-83-73-77

 

Received September 4, 2013.
Accepted December 31, 2013.

 

Resumen

Cellulomonas produce una amplia variedad de glucanasas, entre estas las celulasas y hemicelulasas son las más sobresalientes por sus aplicaciones industriales. Sin embargo, ha mostrado la capacidad de crecer en sustratos diferentes a los derivados de residuos lignocelulósicos. C. flavigena creció lactosa, sacarosa y raftilosa. En lactosa y sacarosa la producción de células fue de aproximadamente 2 mg/mL y en raftilosa solo alcanzó 1 mg/mL. Se determinó la actividad hidrolítica en los extractos intracelulares y extracelulares correspondientes a las actividades de β-galactosidasa y β-fructofuranosidasa. La mayor actividad hidrolítica se encontró en los extractos intracelulares cuando se utilizó raftilosa como sustrato y disminuyó significativamente al utilizar lactosa. Los perfiles de proteínas de los distintos extractos intracelulares presentan gran cantidad de bandas en los distintos sustratos utilizados como fuente de carbono. Probablemente en cada de las fuentes estudiadas, la síntesis de enzimas intracelulares no esté regulada y se exprese todo el potencial de esta bacteria. Además se identificó la presencia del gen de la β-galactosidasa.

Palabras clave: Cellulomonas flavigena, β-galactosidasa, β-fructofuranosidasa, bifuncionalidad.

 

Abstract

The genus Cellulomonas is a cellulose degrading bacteria which produce a wide variety of glucanases, mainly cellulases and hemicellulases with industrial applications. C. flavigena has the ability to grow on carbon sources that are not derived from lignocellulosic wastes such as lactose, sucrose and raftilose. In this study, when C. flavigena was cultured on lactose and sucrose, the cell production was approximately 2 mg/mL, and when was cultured on raftilose, it reached 1 mg/mL. The hydrolytic activity of β-galactosidase and β-fructofuranosidase enzymes were tested in the intra and extra cellular fractions where the highest activity was found in the intracellular fraction using raftilose as substrate, nevertheless using lactose as substrate the activity was significantly low. The protein profiles of the intracellular extracts presented great quantity of bands in the different substrates used as carbon sources of carbon. Probably the synthesis of intracellular enzymes is not regulated and the cell expresses its whole potential. In addition the presence of the gene β-galactosidase was identified.

Keywords: Cellulomonas flavigena, β-galactosidase, β-fructofuranosidase, bifunctionality.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Agradecimientos

ESB agradece al Consejo Nacional de Ciencia y Tecnología (CONACyT) por el apoyo otorgado durante la realización de los estudios de Maestría (367516).

 

References

Abt, B., Foster, B., Lapidus, A., Cium, A. y col. Abt, B., Foster, B., Lapidus, A., Cium, A., Sun, H., Puka, R., Lucas, S., Glavina, T., Nolan, M., Tice, H., Cheng, L, Pitluck, S., Liolios, K., Ivanova, N., Mavromatis, K., Ovchinnikova, G, Pati, A., Goodwin, L., Chen, A., Palaniappan, K., Land, M., Hauser, L., Chang, Y., Jeffries, C, Rohde, M., Göker, M., Woyke, T., Bristow, J., Eisen, J., Markowitz, V, Hugenholtz, P, Kyrpides, N., Klenk, H. (2010). Complete genome sequence of Cellulomonas flavigena type strain (134T). The Genomic Standards Consortium 3, 15-25.         [ Links ]

Amaya-Delgado, L., Mejía-Castillo, T., Santiago-Hernández, A., Vega-Estrada, L, Farrés-G, A., Xoconostle-Cázares, B., Ruiz-Medrano, R., Montes-Horcasitas, MC. y Hidalgo-Lara, ME. (2010). Cloning and expression of a novel, moderately thermostable xylanase-encoding gene (Cfl xyn11 A) from Cellulomonas flavigena. Bioresource Technology 101, 5539-5545.         [ Links ]

Belmares-Cerda, R., Reyes-Vega, ML., Contreras-Esquivel, J.C., Rodríguez-Herrera, R. (2003). Efecto de la fuente de carbono sobre la producción de tanasa en dos cepas de Aspergillus niger. Revista Mexicana de Ingeniería Química 2, 95-100.         [ Links ]

Biedrzycka, E. and Bielecka, M. (2004). Prebiotic effectiveness of fructans of different degrees of polymerization. Trends in Food Science and Technology 15, 170-175.         [ Links ]

Chang, A., Singh, S., Phillips, G. N. Jr. y Thorson, J. S. (2011). Glycosyltransferase structural biology and its role in the design of catalysts for glycosylation. Current Opinion in Biotechnology 22, 800-808.         [ Links ]

Chaudhary, P., Kumar, N. y Deobagkar, D. (1997). The glucanases of Cellulomonas. Biotechnology Advances 15, 315-331.         [ Links ]

Dao, TH., Zhang, J. y Bao, J. (2013). Characterization of inulin hydrolyzing enzyme(s) in commercial glucoamylases and its application in lactic acid production from Jerusalem artichoke tubers (Jat). Bioresource Technology. Disponible en: http://dx.doi.org/10.1016/j.biortech.2013.08.123. Accesado: 24 agosto 2013        [ Links ]

Ende, WVD., Wonterghem, DV., Verhaert, P., Dewil, E. y Laere, A. (1996). Purification and characterization of fructan: fructan fructosyl transferase from chicory (Cichorium intybus L.) roots. Planta 199, 493-502.         [ Links ]

González, R., Blancas, A., Santillana, R., Azaola, A. y Wacher, C. (2004). Growth and final product formation by Bifidobacterium infantis in aerated fermentations. Applied Microbiology and Biotechnology 65, 606-610.         [ Links ]

Gutiérrez-Nava, A. (1997). Identificación de las glucanasas de Cellulomona flavigena crecida en diferentes fuentes de carbono. Tesis de Maestría en Biotecnología, CINVESTAV, México.         [ Links ]

Gutiérrez-Nava, A., Herrera-Herrera, A., Mayorga-Reyes, L., Salgado, L.M. y Ponce- Noyola, T. (2003). Expression and characterization of the celcflB gene from Cellulomonas flavigena encoding an endo-β-1,4-glucanasa. Current Microbiology 47, 359-363.         [ Links ]

Herrera-Herrera, J. A., Pérez-Avalos, O., Salgado, L. M. y Ponce-Noyola, T. (2009). Cyclic AMP regulates the biosynthesis of cellobiohydrolase in Cellulomonas flavigena growing in sugar cane bagasse. Archives of Microbiology 191, 745-750.         [ Links ]

Hung, M-N. y Lee, B. H. (2002). Purification and characterization of a recombinant β-galactosidase with transgalactosylation activity from Bifidobacterium infantis HL96. Applied Microbiology and Biotechnology 58, 439-445.         [ Links ]

Koolman, J. y Röhm K. (2004). Bioquímica: Texto y atlas. Editorial Panamericana, España.         [ Links ]

Madrigal, L. y Sangronis, E. (2007). La inulina y sus derivados como ingredientes claves en alimentos funcionales. Archivos Latinoamericanos de Nutrición 57, 387-396.         [ Links ]

Mayorga-Reyes, L., Morales, Y., Salgado, L.M., Ortega, A. y Ponce-Noyola, T., (2002). Cellulomonas flavigena: characterization of an endo-1,4-xylanase tightly induced by sugarcane bagasse. FEMS Microbiology Letters 214, 205-209.         [ Links ]

Mejía-Castillo, T., Hidalgo-Lara, M.E., Brieba, L.G. y Ortega-López J. (2008). Purification, characterization and modular organization of a cellulose-binding protein, CBP105, a processive β-1,4-endoglucanase from Cellulomonas flavigena. Biotechnology Letters 30, 681-687.         [ Links ]

Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry 31, 426-428.         [ Links ]

Montes, H.C., Ortega, L.J. y Magaña P.I. (1998). Xylanases from Cellulomonas flavigena: purification and characterization. Biotechnology Techniques 12, 663-666.         [ Links ]

Muñoz-Gutiérrez, I., Rodríguez-Alegría, M. E. y López, M. A. (2009). Kinetic behavior and specificity of β-fructosidases in the hydrolysis of plant and microbial fructans. Process Biochemistry 44, 891-898.         [ Links ]

Onishi, N. y Tanaka, T. (1995). Purification and properties of a novel thermostable galacto-oligosaccharide-producing beta-galactosidase from Sterigmatomyces elviae CBS8119. Applied and Environmental Microbiology 61, 4026-30.         [ Links ]

Parche, S., Amon, J., Jankovick, I., Rezzonico, E. , Beleut, M., Barutcu, H., Schnedel, I., Eddy, M., Burkovski, A., Arigoni, F. y Titgemeyer F. (2007). Sugar transport systems of Bifidobacterium longum NCC2705. Journal of Molecular Microbiology and Biotechnology 12, 9-19.         [ Links ]

Parche, S., Nothaft, H., Kamionka, A. y Titgemeyer F. (2000). Sugar uptake and utilization in Streptomyces coelicolor a PTS view to the genome. Antonie van Leeuwenhoek 78, 243-251.         [ Links ]

Pérez- Avalos, O., Sánchez- Herrera, L., Salgado, L. y Ponce-Noyola, T. (2008). A bifunctional endoglucanase/endoxylanase from Cellulomonas flavigena with potential use in industrial processes at diferent pH. Current Microbiology 57, 39-44.         [ Links ]

Pérez-Avalos, O. y Ponce-Noyola T. (2002). Synthesis and regulation of D-xylanase from Cellulomonas flavigena wild type and a mutant. Biotechnology Letters 24, 813-817.         [ Links ]

Pérez-Avalos, O., Ponce-Noyola, T., Magaña-Plaza, I. y de la Torre, M. (1996). Induction of xylanase and β-xylosidase in Cellulomonas flavigena growing on different carbon sources. Applied Microbiology and Biotechnology 46, 405-409.         [ Links ]

Pliego-Arreaga, R., Regalado, C., Amaro-Reyes, A., García-Almendárez, B.E. (2013). Lactose-induced expression of recombinant turnip peroxidase in E. coli. Revista Mexicana de Ingeniería Química 12, 505-515.         [ Links ]

Ponce-Noyola, T. y de la Torre, M. (2001). Regulation of cellulases and xylanases from derepressed mutant of Cellulomonas flavigena growing on sugar cane bagasse in continuous culture. Bioresource Technology 78, 285-291.         [ Links ]

Rajoka, M. (2004). Influence of various fermentation variables on exo-glucanase production in Cellulomonas flavigena. Electronic Journal of Biotechnology 7, 259-266.         [ Links ]

Rajoka, M. y Malik, K. (1999). Cellumonas. En: Encyclopedia of Food Microbiology, Pp. 365-371. Academic Press, London.         [ Links ]

Roy, D., Daoudi, L. y Azaola, A. (2002). Optimization of galacto-oligosaccharide production by Bifidobacterium infantis rw-8120 using response surface methodology. Journal of Industrial Microbiology and Biotechnology 29, 281-285.         [ Links ]

Sánchez-Herrera, L.M., Ramos-Valdivia, A.C., de la Torre, M., Salgado, L.M. y Ponce-Noyola, T. (2007). Differential expression of cellulases and xylanases by Cellulomonas flavigena grown on different carbon sources. Applied of Microbiology and Biotechnology 77, 589-595.         [ Links ]

Schmiz, K.L., Broil, B. y John, B. (1983). Cellobiose phosphorylase of Cellulomonas, occurrence induction and its role in cellobiose metabolism. Archives of Microbiology 135, 241-249.         [ Links ]

Schwab, C., Lee, V., Sørensen, K. I. y Gänzle, M. G. (2011). Production of galactooligosaccharides and heterooligosaccharides with disrupted cell extracts and whole cells of lactic acid bacteria and bifidobacteria. International Dairy Journal 21, 748-754.         [ Links ]

Solís-Badillo, E. (2009). Estudio de la actividad hídrolitica en lactosa por Cellulomonas sp. Reporte de Servicio Social, UAM-Xochimilco, México.         [ Links ]

Splechtna, B., Nguyen, T. H., Steinböck, M., Kulbe, K. D., Lorenz, W. y Haltrich, D. (2006). Production of prebiotic galacto-oligosaccharides from lactose using β-galactosidases from Lactobacillus reuteri. Journal of Agricultural and Food Chemistry 54, 4999-5006.         [ Links ]

Splechtna, B., Nguyen, T. H., Zehetner, R., Lettner, H. P., Lorenz, W. y Haltrich, D. (2007). Process development for the production of prebiotic galactooligosaccharides from lactose using β-galactosidase from Lactobacillus sp. Biotechnology Journal 2, 480-485.         [ Links ]

Tzortzis, G., Goulas, A. y Gibson, G. (2005). Synthesis of prebiotic galactooligosaccharides using whole cells of a novel strain, Bifidobacterium bifidum ncimb 41171. Applied Microbiology and Biotechnology 68, 412-416.         [ Links ]

Vasiljevic, T. y Jelen, P. (2002). Lactose hydrolysis in milk as affected by neutralizers used for the preparation of crude β-galactosidase extracts from Lactobacillus bulgaricus 11842. Innovative Food Science and Emerging Technologies 3, 175-184.         [ Links ]

Wakarchuk, W.W., Kilburn, D.G. Miller, R.C.Jr. y Warren R.A.J. (1984) The preliminary characterization of the 13-glucosidases of Cellulomonas fimi. Journal of General Microbiology 130, 1385-1389.         [ Links ]

Warner, J. y Lolkema, J. (2003). CcpA-dependent carboín catabolite repression in bacteria. Microbiology and Molecular Biology Reviews 67, 475-490.         [ Links ]

Wong, K., Tan, L. y Saddler, J. (1988). Multiplicity of β-1,4-xylanase in microorganisms: functions and applications. Microbiology Review 52, 305-317.         [ Links ]

Zhou, Y., Lee, Y., Park, I., Sun, Z., Yang, T., Yang, P., Choi, Y. y Sun M. (2012). Cyclodextrin glycosyltransferase encoded by gene of Paenibacillus azotofixans YUPP-5 exhibited a new function to hydrolyze polisaccharides whit β-1,4 linkage. Enzyme and Microbial Technology 50, 151-157.         [ Links ]

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons