SciELO - Scientific Electronic Library Online

 
vol.13 número2Caracterización estructural y textural de una haloisita colombianaIdentificación de β-galactosidasa, β-fructofuranosidasa y glicosil transferasa de Cellulomonas flavigena al crecer en diferentes fuentes de carbono índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Revista mexicana de ingeniería química

versão impressa ISSN 1665-2738

Rev. Mex. Ing. Quím vol.13 no.2 Ciudad de México Ago. 2014

 

Artículos regulares/Biotecnología

 

Genetic identification of the bioanode and biocathode of a microbial electrolysis cell

 

Identificación genética del bioánodo y biocátodo de una celda de electrolisis microbiana

 

R. Valdez-Ojeda1*, M. Aguilar-Espinosa2, L. Gómez-Roque1, B. Canto-Canché3, RM. Escobedo Gracia-Medrano2, J. Domínguez-Maldonado, L. Alzate-Gaviria1

 

1 Unidad de Energía Renovable. Centro de Investigación Científica de Yucatán. (CICY). Mérida, Yucatán. Calle 43 No. 1-30, Col. Chuburná de Hidalgo, C.P. 97200. México. *Corresponding author. E-mail: dubi@cicy.mx Tel. (52)999- 942-83-30, Fax (52) 999-981-39-00.

2 Unidad de Bioquímica y Biología Molecular de Plantas. Unidad de Energía Renovable. Centro de Investigación Científica de Yucatán. (CICY). Mérida, Yucatán. Calle 43 No. 1-30, Col. Chuburná de Hidalgo, C.P. 97200. México.

3 Unidad de Biotecnología. Unidad de Energía Renovable. Centro de Investigación Científica de Yucatán. (CICY). Mérida, Yucatán. Calle 43 No. 1-30, Col. Chuburná de Hidalgo, C.P. 97200. México.

 

Received September 4, 2013.
Accepted December 31, 2013.

 

Abstract

The aim of this study was to identify the microorganisms present on the graphite cloth of the bioanode and biocathode of a Microbial Electrolysis Cell (MEC) using 16S ribosomal RNA gene cloning and sequencing. The results obtained indicated that the bioanode clones were related with the phyla: Firmicutes (15.3%) Proteobacteria (7.6%), Bacteroidetes (30.7%), and Ignavibacteriae (7.6%). Conversely, the biocathode clones were related with the phylum Proteobacteria (38.4%). The bioanode clones were related with species identified previously in MECs and Microbial Fuel Cells (MFCs). However, the biocathode clones were related with Rhodopseudomonas palustris, which have not been reported for hydrogen production by MEC. R. palustris probably should be involved into hydrogen production of 0.011 m3 H2/m3 cathode liquid volume per day with an applied voltage of 1 V.

Keywords: exoelectrogenic bacteria, hydrogen generation, Rhodopseudomonas palustris, hydrogenase, MEC.

 

Resumen

El objetivo de este trabajo fue la identificación de microorganismos presentes en la tela de grafito del biocátodo y bioánodo de una Celda de Electrólisis Microbiana (CEM), utilizando clonación y secuenciación del gen 16S del RNA ribosomal. Los resultados obtenidos indicaron que las clonas del bioánodo se relacionaron con los filos Firmicutes (15.3%), Proteobacteria (7.6%), Bacteroidetes (30.7%), and Ignavibacteriae (7.6%). Mientras que las clonas del biocátodo se relacionaron con el filo Proteobacteria (38.4%). Las clonas del bioánodo se relacionaron con especies identificadas previamente en CEM y Celdas de Combustible Microbiana (CCM). Sin embargo, las clonas del biocátodo se relacionaron con Rhodopseudomonas palustris, la cual no había sido reportada para la producción de hidrógeno a través de CEM. Los resultados sugieren la participación de esta especie en la producción de 0.011 m3 H2/m3 por volumen líquido de cátodo al día aplicando un voltaje de 1.

Palabras clave: bacteria exoelectrogénica, generación de hidrogeno, Rhodopseodomonas palustris, hidrogenasa, CEM.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Acknowledgments

The authors gratefully acknowledge the financial support granted by the Consejo Nacional de Ciencia y Tecnología (CONACyT, Mexico) project No. 149135 and 166371. Also wish to thank Miguel Tzec Sima and Tanit Toledano Thompson for their assistance with this research.

 

References

Adessi, A., Torzillo, G., Baccetti, E. and De Philippis, R. (2012). Sustained outdoor H2 production with Rhodopseudomonas palustris cultures in a 50 L tubular photobioreactor. International Journal of Hydrogen Energy 37, 8840-8849.         [ Links ]

Alfonta, L. (2010). Genetically Engineered Microbial Fuel Cells. Electroanalysis 22, 822-831.         [ Links ]

Clauwaert, P, van der Ha, D., Boon, N., Verbeken, K., Verhaege, M., Rabaey, K. and Verstraete, W. (2007). Open Air Biocathode Enables Effective Electricity Generation with Microbial Fuel Cells. Environmental Science & Technology 41, 7564-7569.         [ Links ]

Canto-Canché, B., Tzec-Simá, M., Vázquez-Loría, J. I., Espadas-Alvarez, H., Chí-Manzanero, B. H., Rojas-Herrera, R., Valdez-Ojeda, R. and Alzate-Gaviria, L. (2013). Simple and inexpensive DNA extraction protocol for studying the bacterial composition of sludges used in microbial fuel cells. Genectis and Molecular Research 12, 282-292.         [ Links ]

Carlozzi, P. and Sacchi, A. (2001). Biomass production and studies on Rhodopseudomonas palustris grown in an outdoor, temperature controlled, underwater tubular photobioreactor. Journal of Biotechnology 88, 239-249        [ Links ]

Carepo, M., Baptista, J. F., Pamplona, A., Fauque, G., Moura, J. J. and Reis, M. A. (2002). Hydrogen metabolism in Desulfovibrio desulfuricans strain New Jersey (NCIMB 8313)-comparative study with D. vulgaris and D. gigas species. Anaerobe 8, 325-32.         [ Links ]

Chalam, A. V., Sasikala, C., Ramana, C.V. and Raghuveer, R. P. (1996). Effect of pesticides on hydrogen metabolism of Rhodobacter sphaeroides and Rhodopseudomonas palustris. FEMS Microbiology Ecology 19, 1-4.         [ Links ]

Chae, K.J., Choi, M.J., Lee, J., Ajayi, F.F. and Kim, I.S. (2008). Biohydrogen production via biocatalyzed electrolysis in acetate-fed bioelectrochemical cells and microbial community analysis. International Journal of Hydrogen Energy 33, 5184-5192        [ Links ]

Chen, C-Y, Lee, C-M and Chang, J-S. (2006). Hydrogen production by indigenous photosynthetic bacterium Rhodopseudomonas palustris WP3-5 using optical fiber-illuminating photobioreactors. Biochememical Engineering Journal 32, 33-42.         [ Links ]

Croese, E., Pereira, M., Euverink, G-J, Stams, A. and Geelhoed, J. (2011). Analysis of the microbial community of the biocathode of a hydrogen-producing microbial electrolysis cell. Applied Microbiology and Biotechnology 92, 1083-1093.         [ Links ]

Domínguez Maldonado, J.A., García-Rodríguez, O., Aguilar-Vega, M., Smit M., Alzate-Gaviria L. (in press). Disminución de la capacidad de intercambio catiónico en una pila de combustible microbiana y su relación con la densidad de potencia. Revista Mexicana de Ingeniería Química, en prensa.

Drapcho, C. M., Phu, N. N. and Walker, T. H. (2008). Biofuels Engineering Process Technology. Editorial McGraw-Hill, United States of America.         [ Links ]

Ghosh, W., George A., Agarwal A., Raj P., Alam, M., Pyne, P. and Das Gupta, S. K. (2011). Whole-Genome Shotgun Sequencing of the Sulfur-Oxidizing Chemoautotroph. Tetrathiobacter kashmirensis. Journal of Bacteriology 193, 5553-5554.         [ Links ]

Geelhoed, J. S., Hamelers, H. V. M., and Stams, A. J. M. (2010). Electricity-mediated biological hydrogen production. Current Opinion in Microbiology 13, 307-315.         [ Links ]

Geelhoed, J. S. and Stams, A. J. M. (2011). Electricity-Assisted Biological Hydrogen Production from Acetate by Geobacter sulfurreducens. Environmental Science and Technology 45, 815-820.         [ Links ]

Holmes, D. E., Chaudhuri, S. K., Nevin, K. P., Mehta, T., Methé B. A., Liu, A., Ward, J. E., Woodard, T. L., Webster, J. and Lovley, D. R. (2006). Microarray and genetic analysis of electron transfer to electrodes in Geobacter sulfurreducens. Environmental Microbiology 8, 1805-1815.         [ Links ]

Hu, H., Fan, Y. and Liu, H. (2008). Hydrogen production using single-chamber membrane-free microbial electrolysis cells. Water Research 42, 4172-4178.         [ Links ]

Jeremiasse, A.W., Hamelers, H.V. M. and Buisman, C. J. N. (2010). Microbial electrolysis cell with a microbial biocathode. Bioelectrochemistry 78, 39-43.         [ Links ]

Kiely, P. D., Cusick, R., Call, D. F., Selembo, P. A., Regan, J. M. and Logan, B. E. (2011). Anode microbial communities produced by changing from microbial fuel cell to microbial electrolysis cell operation using two different wastewaters. Bioresource Technology 102, 388-394        [ Links ]

Larimer, F. W., Chain, P., Hauser, L., Lamerdin, J., Malfatti, S., Do, L., Land, M. L., Pelletier, D. A., Beatty, J. T., Lang, A. S., Tabita, F. R., Gibson, J. L., Hanson, T. E., Bobst, C., Torres, J. L., Peres, C., Harrison, F. H., Gibson, J. and Harwood, C. S. (2004). Complete genome sequence of the metabolically versatile photosynthetic bacterium Rhodopseudomonas palustris. Nature Biotechnology 22, 55-61.         [ Links ]

Lee, C-M., Hung, G-J. and Yang, C-F (2011). Hydrogen production by Rhodopseudomonas palustris WP 3-5 in a serial photobioreactor fed with hydrogen fermentation effluent. Bioresource Technology 102, 8350-8356.         [ Links ]

Liu, H., Hu H., Chignell, J. and Fan, Y. (2010). Microbial electrolysis: novel technology for hydrogen production from biomass. Biofuels 1, 129-142.         [ Links ]

Liu, Z., N-U., Vogl, K., Iino, T., Ohkuma, M., Overmann, J., and Bryant, D. A. (2012). Complete genome of Ignavibacterium album, a metabolically versatile, flagellated, facultative anaerobe from the phylum chlorobi. Frontiers in Microbiology 29, 1-15.         [ Links ]

Logan, B. E. (2008). Microbial Fuel Cells. Editorial Wiley-Interscience. United States of America.         [ Links ]

Logan, B. E. and Regan, J. M. (2006). Electricity-producing bacterial communities in microbial fuel cells. Trends in Microbiology 14, 512-518.         [ Links ]

Lojou, E., Durand, M. C., A. Dolla and Bianco, P. (2002). Hydrogenase activity control at Desulfovibrio vulgaris cell-coated carbon electrodes: biochemical and chemical factors influencing the mediated bioelectrocatalysis. Electroanalysis 14, 913-922.         [ Links ]

Luna, G. M., Dell?Anno, A. and Danovaro, R. (2006). DNA extraction procedure: a critical issue for bacterial diversity assessment in marine sediments. Environmental Microbiology 8, 308-320.         [ Links ]

Muyzer, G., de Waal, E.C. and Uitterlinden, A. G. (1993). Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied and Environmental Microbiology 59, 695-700.         [ Links ]

Okubo, Y., Futamata, H. and Hiraishi, A. (2006). Characterization of phototrophic purple nonsulfur bacteria forming colored microbial mats in a swine wastewater ditch. Applied and Environmental Microbiology 72, 6225-6233.         [ Links ]

Rabaey, K. and Rozendal, R. A. (2010). Microbial electrosynthesis - revisiting the electrical route for microbial production. Nature Reviews Microbiology 8, 706-716.         [ Links ]

Rozendal, R. A., Jeremiasse, A. W., Hamelers, H. V. M. and Buisman, C. J. N. (2007). Hydrogen production with a microbial biocathode. Environmental Science and Technology 42,629-634.         [ Links ]

Riedel, T., Held, B., Nolan, M., Lucas, S., Lapidus, A. , Tice, H., Glavina Del Rio, T., Cheng, J., Han, C., Tapia, R., Goodwin, L., Pitluck, S., Liolios, K., Mavromatis, K., Pagani, I., Ivanova, N., Mikhailova, N., Pati, A., Chen, A., Palaniappan, K., Land, M., Rohde, M., Tindall, B. , Detter, J., Göker, M., Bristow, J., Eisen, J., Markowitz, V., Hugenholtz, P., Kyrpides, N., Klenk, H. and Woyke, T. (2012). Genome sequence of the orange-pigmented seawater bacterium Owenweeksia hongkongensis type strain (UST20020801T). Standards in Genomic Sciences 7, 120-130.         [ Links ]

Saitou, N. and Nei, M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4, 406-425.         [ Links ]

Selembo, P. A., Merrill, M. D. and Logan, B. E. (2010). Hydrogen production with nickel powder cathode catalysts in microbial electrolysis cells. International Journal of Hydrogen Energy 35, 428-437.         [ Links ]

Scheifinger, C. C. Linehan, B. and Wolin, M. J. (1975). H2 production by Selenomonas ruminantium in the absence and presence of methanogenic bacteria. Applied Microbiology 29, 480-483.         [ Links ]

Strycharz, S. M., Glaven, R. H., Coppi, M. V., Gannon, S. M., Perpetua, L. A., Liu, A., Nevin, K. P. and Lovley, D. R. (2011). Gene expression and deletion analysis of mechanisms for electron transfer from electrodes to Geobacter sulfurreducens. Bioelectrochemistry 80, 142-150.         [ Links ]

McCarthy, L. R. and Carlson, J. R. (1981). Selenomonas sputigena Septicemia. Journal Clinical of Microbiology 14, 684-685.         [ Links ]

Tamura, K. Peterson, D., Peterson, N., Stecher, G., Nei, M. and Sudhir, K. (2011). MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 24, 1596-1599.         [ Links ]

Tamaru, Y., Miyake, H., Kuroda, K., Nakanishi, A., Kawade, Y., Yamamoto, K., Uemura, M. Fujita, Y., Doi, R. H. and Ueda, M. (2010). Genome sequence of the cellulosome-producing mesophilic organism Clostridium cellulovorans 743B. Journal of Bacteriology 192, 901-902.         [ Links ]

Vignais, P. (2008). Regulation of Hydrogenase Gene Expression. In: The Purple Phototrophic Bacteria (C.N. Hunter, F. Daldal, M. Thurnauer and J.T. Beatty eds.), Pp. 743-757. Springer Netherlands.         [ Links ]

Venkata Mohan, S. Agarwal, L., Mohanakrishna, G., Srikanth, S., Kapley, A., Purohit, H. J. and Sarma, P. N. (2011). Firmicutes with iron dependent hydrogenase drive hydrogen production in anaerobic bioreactor using distillery wastewater. International Journal of Hydrogen Energy 36, 8234-8242.         [ Links ]

Xing, D., Zuo, Y., Cheng, S., Regan, J. M. and Logan, B. E. (2008). Electricity generation by Rhodopseudomonas palustris DX-1. Environmental Science and Technology 42, 4146-4151.         [ Links ]

Xing, D., Cheng, S., Regan, J. M. and Logan, B. E. (2009). Change in microbial communities in acetate- and glucose-fed microbial fuel cells in the presence of light. Biosensors and Bioelectronics 25, 105-111.         [ Links ]

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons