SciELO - Scientific Electronic Library Online

 
vol.13 número2Modelado de un adsorbedor de lecho fijo basado en un modelo de isoterma o un modelo cinético aparenteCaracterización estructural y textural de una haloisita colombiana índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de ingeniería química

versión impresa ISSN 1665-2738

Rev. Mex. Ing. Quím vol.13 no.2 Ciudad de México ago. 2014

 

Artículos regulares/Materiales

 

Magnetic heating ability of silica-cobalt ferrite nanoparticles

 

Capacidad de calentamiento magnético de nanopartículas de sílica-ferrita de cobalto

 

M.E. Cano2, R.H. Medina1, V.V.A. Fernández2 and P.E. García-Casillas1*

 

1 Instituto de Ingeniería y Tecnología de Universidad Autónoma de Ciudad Juárez, Av. del Charo 620 Nte., Col. Partido Romero, Ciudad Juárez, Chihuahua, México. *Autora para la correspondencia. E-mail: pegarcia@uacj.mx Tel. (656) 6884887.

2 Centro Universitario de la Ciénega de la Universidad de Guadalajara, Av. Universidad 1115, col. Linda Vista, Ocotlán, Jalisco, México.

 

Received April 1 2013.
Accepted February 6 2014.

 

Abstract

In this study, the magnetic induction heating of cobalt ferrite nanoparticles with or without silica coating was analyzed for evaluating the feasibility of these materials to be used for magnetic hyperthermia. Particles of approximately 14 and 40 run were evaluated. For this purpose, we used a magnetic induction system to obtain the specific absorption rate (SAR) values. Two different amplitudes of 35 mT and 63 mT at 180 kHz were used. Our results showed the smaller particles exhibiting the higher SAR value, independent of the intensities applied. Moreover, there was no significant change in the SAR values for both particle sizes in presence of silica. However, silica increased the hydrolytic degradation.

Keywords: cobalt ferrite, hyperthermia, magnetic induction, nanomaterials, ferromagnetism.

 

Resumen

En este estudio, el calentamiento por inducción magnética de nanopartículas de ferrita de cobalto con o sin recubrimiento de sílice fueron analizados para evaluar la viabilidad de estos materiales para ser utilizados en tratamiento de hipertermia magnética. Las partículas evaluadas tienen un tamaño entre 14 y 40 nm aproximadamente. Para este propósito, se utilizó un sistema de inducción magnética obteniendo la tasa de absorción específica valores (SAR, por sus siglas en inglés). Se utilizaron dos diferentes amplitudes de 35 mT y 63 mT a 180 kHz. Estos resultados muestran que las partículas mas pequeñas presentan el valor más alto de SAR, independiente de las intensidades aplicadas. Por otra parte, no hubo ningún cambio significativo en los valores de SAR para ambos tamaños de partículas cuando estas partículas contienen sílice. Sin embargo, sílice aumento la degradación hidrolítica.

Palabras clave: ferrita de cobalto, hipertermia, inducción magnética, nanomateriales, ferromagnetismo.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

References

Cano, M.E., Barrera, A., Estrada, J.C., Hernández, A., Córdova, T. (2011). An induction heater device for studies of magnetic hyperthermia and SAR measurements. Review of Scientific Instruments 82, 114904-11498.         [ Links ]

Cano, M.E., Mazón, E.E., Hernández, A. and Alanis, M.E.E. (2012) Mx. Patent. Sol. Mx/a/2012/003963.         [ Links ]

Cornell R.M. and Udo, S. (2003). The iron oxides: Structure, properties, reactions, occurrences, and uses, 2nd. ed., Wiley-VCH, Germany.         [ Links ]

Cullity, B.D. and Graham C.D. (2009). Introduction to magnetic materials. 2nd. ed., Wiley, Piscataway, N.J.         [ Links ]

Gaumet, M., Vargas, A., Gurny, R. and Delie, F. (2008). Nanoparticles for drug delivery: The need for precision in reporting particle size parameters. European Journal of Pharmaceutics and Biopharmaceutics 69, 1-9.         [ Links ]

González-Fernández, M.A., Torres, T.E., Andrés-Vergés, M., R. Costo, de la Presa, P., Serna, C.J., Morales, M.P., Marquina, C., Ibarra, M.R. and Goya G.F. (2009). Magnetic nanoparticles for power absorption: Optimizing size, shape and magnetic properties. Journal of Solid State Chemistry 182, 2779-2784        [ Links ]

Goya, G.F., Lima, E.J., Arelaro, A.D., Torres, T., Rechenberg, H.R., Rossi, L., Marquina, C., and Ibarra M.R. (2008). Magnetic Hyperthermia With Fe3O4 Nanoparticles: The Influence of Particle Size on Energy Absorption. Institute of Electrical and Electronics Engineers Transations on Magnetism 44, 4444-4447.         [ Links ]

Hrushikesh M. Joshi, Yen Po Lin, Mohammed Aslam, P. V. Prasad, Elise A. Schultz-Sikma, Edelman, R., Meade, T. and Dravid, V.P. (2009). Effects of shape and size of cobalt ferrite nanostructures on their MRI contrast and thermal activation. Journal of Physical Chemistry 113, 17761-17767.         [ Links ]

Huang, S., Wang, S-Y., Gupta, A., Borca-Tasciuc, D.A., and Salon, S.J. (2012.) On the measurement technique for specific absortion rate of nanoparticles in an alternating electromagnetic field. Measurements Science and Technology 23, 035701 6pp.         [ Links ]

Martel-Estrada, S.A, Olivas-Armendáriz, I., Martínez-Pérez, C.A. and Chacón-Nava, J.G. (2012). In vitro Bioactivity of Chitosan/Poly(dl-lactide) Composites. Revista Mexicana de Ingeniería Química 11, 505-512.         [ Links ]

Ming Ma, Ya Wu, Jie Zhou, Yongkang Sun, Yu Zhang, Ning Gu. (2004). Size Dependence of Specific Power Absorption of Fe3O4 Particles in AC Magnetic Field. Journal of Magnetism and Magnetic Materials 268, 33-39.         [ Links ]

Neuberger, T., Schöpf, B., Hofmann, H., Hofmann, M. and von Rechenberg, B. (2005). Superparamagnetic nanoparticles for biomedical applications: Possibilities and limitations of a new drug delivery system. Journal of Magnetism and Magnetic Materials 293, 483-496.         [ Links ]

O'Neili M.J. (1966). Measurement of Specific Heat Functions by Differential Scanning Calorimetry. Analytical Chemistry 38, 1331-1335.         [ Links ]

Rosensweig, R.E. (2002). Heating magnetic fluid with alternating magnetic field. Journal of Magnetism and Magnetic Materials 252, 370-374.         [ Links ]

Ruizhi Xu, Yu Zhang, Ming Ma, Jingguang Xia, Jiwei Liu, Quanzhong Guo, and Ning Gu, (2007). Measurement of Specific Absorption Rate and Thermal Simulation for Arterial Embolization Hyperthermia in the Maghemite-Gelled Model. Institute of Electrical and Electronics Engineers Transactions on Magnetism 43, 1078-1085        [ Links ]

Kelm, U. and Alfaro, G. (2011). Synthesis of Zeolites Nap-gis, with Different Morphologies, From Two Diatomites. Revista Mexicana de Ingeniería Química 10, 117-123.         [ Links ]

Varadan, V.K., Chen L. and Xie, J. (2008). Nanomedicine: design and applications of magnetic nanomaterials, nanosensors, 1 st. ed. Wiley & Sons. Ltd., Chichester U.K.         [ Links ]

Veverka, M., Veverka, P., Kaman, O., Lancok, A., Zaveta, K., Pollert, E., Knιzek, K., Bohacek, J., Benes, M., Kaspar, P., Duguet E., and Vasseur, S. (2007). Magnetic heating by cobalt ferrite nanoparticles. Nanotechnology 18, 345704-345711.         [ Links ]

Wang, S.Y., Huang, S., and Borca-Tasciuc, D.A. (2013). Potential sources of errors in measuring and evaluating the specific loss power of magnetic nanoparticles in an alternating magentic field. Institute of Electrical and Electronics Engineers Transactions on Magnetism 49, 255-262.         [ Links ]

Yeong II Kim, Y., Don Kim, D., Choong Sub Lee. (2003). Synthesis and characterization of CoFe2O4 magnetic nanoparticles prepared by temperature-controlled coprecipitation method. Physica B 337, 42-51.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons