SciELO - Scientific Electronic Library Online

 
vol.13 número2Aumento de la actividad metanogenica en lodos granulares, precipitando calcio en el nejayote mediante el burbujeo de CO2Modelado de un adsorbedor de lecho fijo basado en un modelo de isoterma o un modelo cinético aparente índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de ingeniería química

versión impresa ISSN 1665-2738

Rev. Mex. Ing. Quím vol.13 no.2 Ciudad de México ago. 2014

 

Artículos regulares/Ingeniería ambiental

 

Disminución de la capacidad de intercambio catiónico en una pila de combustible microbiana y su relación con la densidad de potencia

 

Reduction of cation exchange capacity in a microbial fuel cell and its relation to the power density

 

J.A. Domínguez-Maldonado1*, O. García-Rodríguez1, M. Aguilar-Vega2, M. Smit1, L. Alzate-Gaviria1

 

1 Centro de Investigación Científica de Yucatán. (CICY). Mérida, Yucatán. Calle 43 No. 130, Col. Chuburná de Hidalgo, C.P. 97200. México. Unidad de Energía Renovable. *Autor para la correspondencia. E-mail: Joe2@cicy.mx Tel. (52) 999 9428330, Fax (52) 999 981 39 00.

2 Centro de Investigación Científica de Yucatán. (CICY). Mérida, Yucatán. Calle 43 No. 130, Col. Chuburná de Hidalgo, CP. 97200. México. Unidad de Materiales Poliméricos.

 

Recibido 25 de Junio de 2013.
Aceptado 20 de Noviembre de 2013.

 

Resumen

Se realizó el diseño y construcción de una pila de combustible microbiana (PCM) tipo PEM (Proton Exchange Membrane), constituida por cuatro pares de cámaras con un volumen de 0.5 L cada una, separadas por una membrana de Nafion® 117. La celda fue monitoreada durante 122 días, utilizando agua residual sintética como fuente de carbono. La reducción de la capacidad de intercambio catiónico en la membrana, fue evaluada en dos fases: 1 y 2, la primera a los 43 días y la segunda a los 79 días. Los coeficientes de intercambio catiónico obtenidos en la fase 1 y fase 2 fueron 2.03 ×10-3 y 1.25 ×10-3 meq g-1 polímero, respectivamente, lo que indica una disminución en las propiedades de intercambio catiónico de la membrana en el tiempo. Los valores máximos de la densidad de potencia obtenidos fueron 325 y 97 mWm-3, respectivamente. La reducción de la potencia obtenida en la fase 2, se atribuyó a la pérdida de capacidad de intercambio catiónico, debido a incrustaciones de hierro y a la capa de depósito orgánico presentes en la membrana.

Palabras clave: capacidad de intercambio catiónico, membrana intercambiadora de protones, bioincrustación, pila de combustible microbiana, densidad de potencia.

 

Abstract

A PEM type Microbial Fuel Cell was designed and constructed. This cell consisted of four pairs of chambers with a volume of 0.5 L each one of them, separated by a Nafion®117 membrane. The cell was monitored during 122 days, using synthetic wastewater as carbon source. The reduction of cation exchange capacity in the membrane was evaluated in two phases: 1 and 2, the first one at 43 days and the second one at 79 days. The cationic exchange coefficients obtained were 2.03 ×10-3 and 1.25 ×10-3 meq g-1 polymer, for phase 1 and 2 respectively, indicating a decrease in the cation exchange properties in the membrane. The maximum obtained power densities were 325 and 97 mW.m-3, respectively. The reduction of power density at phase 2 was attributed to a decrease in the cation-exchange capacity by iron fouling and a formation of a biofouling layer in the membrane.

Keywords: cation exchange capacity, proton exchange membrane, biofouling, microbial fuel cell, power density.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Agradecimientos

Los autores agradecen al Consejo Nacional de Ciencia y Tecnología (CONACYT) por el apoyo otorgado con el fondo de ciencia básica Sep-Conacyt con clave: 106416 para la realización de este proyecto. Agradecimiento al M. en C. Enrique Escobedo Hernández por el apoyo en la espectroscopia de impedancia electroquímica.

 

Referencias

Aelterman, P., Rabaey K., Clauwaert P. y Verstraete, W. (2006). Microbial fuel cells for wastewater treatment. Water Science and Technology 54, 9-15.         [ Links ]

Aelterman, P., Versichele, M., Marzorati, M., Boon, N. y Verstraete, W. (2008). Loading rate and external resistance control the electricity generation of microbial fuel cells with different tree dimensional anodes. Bioresource Technology 99, 8895-8902.         [ Links ]

Alzate-Gaviria, L., Sebastian, P. y Pérez-Hernández, A. (2007). Comparison of two anaerobic systems for hydrogen production from the organic fraction of municipal solid waste and synthetic wastewater. International Journal of Hydrogen Energy 32, 3141-3146.         [ Links ]

Alzate-Gaviria, L., Fuentes-Albarrán, C., Álvarez-Gallegos, A. y Sebastian, P. (2008). Generación de electricidad a partir de una celda de combustible microbiana tipo PEM. Interciencia 33, 503-509.         [ Links ]

Angenent, L., Karim, K., AL-Dahhan, M., Wrenn, B. y Domigues-Espinosa, R. (2004). Production of bioenergy and biochemicals from industrial and agricultural wastewater. Trends in Biotechnology 22, 477-485.         [ Links ]

Aperador, W., Bautista-Ruíz, J. y Pardo-Cuervo, O. (2012). Comportamiento electroquímico de las peliculas delgadas de crn/cr obtenidas variando el potencial bias. Revista Mexicana de Ingeniería Química 11,145-154.         [ Links ]

Chae, K.J., Choi, M., Ajayi, F.F., Park, W., Chang, I.S. y Kim I.S. (2008) Mass Transport through a Proton Exchange Membrane (Nafion) in Microbial Fuel Cells. Energy and Fuels 22, 169-176.         [ Links ]

Cheng, S, Liu, H. y Logan, B. (2006). Increased Power generation in a continuous flow MFC with advective flow through the porous anode and reduced electrode spacing. Environmental Science and Technology 40, 2426-2432.         [ Links ]

Cheng, S., Liu, H., and Logan, B. E. (2006a). Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (nafion and PTFE) in single chamber microbial fuel cells. Environmental Science and Techology 40, 364-369        [ Links ]

Cheng, S. y Logan, B.E. (2007). Ammonia treatment of carbon cloth anodes to enhance power, generation of microbial fuel cells. Electrochemistry Communications 9,492-496.         [ Links ]

Choi, M.J., Chae, K.J., Ajayi F.F., Kyoung-Yeol, K., Hye-Weon, Yu., Chang-won, Kim. y In, S.K. (2011). Effects of biofouling on ion transport through cation exchange membranes and microbial fuel cell performance. Bioresource Technology 102, 298-303.         [ Links ]

Clauwaert, P., Aelterman, P., Pham, H., De Schamphelaire, L., Carballa, M., Rabaey, K. y Verstraete, W. (2008). Minimizing losses in bio-electrochemical systems: the road to applications. Applied Microbiology and Biotechnology 79, 901-913.         [ Links ]

Fan, Y., Sharbrough, E. y Liu, H. (2008). Quantification of the Internal Resistance Distribution of Microbial Fuel Cells. Environmental Science and Technology 42, 8101-8107.         [ Links ]

Ghangrekar, M.M. y Shinde, V.B. (2007). Performance of membrane-less microbial fuel cell treating wastewater and effect of electrode distance and area on electricity production. Bioresource Technology 98, 2879-2885.         [ Links ]

Haberman, W. y Pommer, E. (1991). Biological fuel cells with sulphide storage capacity. Applied Microbiology and Biotechnology 35, 128-133.         [ Links ]

Harnisch, F., Schröder, U. y Scholz, F. (2008). The Suitability of Monopolar and Bipolar Ion Exchange Membranes as Separators for Biological Fuel Cells. Environmental Science and Technology 42, 1740-1746.         [ Links ]

Harnisch, F. y Schröder, U. (2009). Selectivity versus mobility: Separation of anode and cathode in microbial bioelectrochemical Systems. ChemSusChem 2, 921-926.         [ Links ]

He, Z., Minteer, S. y Angenent, L. (2005). Electricity Generation from artificial wastewater using an upflow microbial fuel cell. Environmental Science and Technology 39, 5262-5267.         [ Links ]

Hong, Y., Call, F.D., Werner, C.M. y Logan B. E. (2011). Adaptation to high current using low external resistances eliminates power overshot in microbial fuel cells. Biosensors and Bioelectronics 28, 71-76.         [ Links ]

Katuri, K.P. y Scott, K. (2010). Electricity generation from treatment of the waste water with a hybrid upflow microbial fuel cell. Biotechnology and Bioenergy 107, 52-58.         [ Links ]

Kyung Jang, J., Hai Pham, T., Seop Chang, I., Hyun Kang, K., Moon, H., Suk Cho, K. y hong Kim, B. (2004). Construction and operation of a novel mediator-and membrane-less microbial fuel cell. Process Biochemistry 39, 1007-1012.         [ Links ]

Larminie, J. y Dicks, A. (2003). Fuel cell systems explained. Editorial John Wiley & Sons, England.         [ Links ]

Litster, S., Buie, C.R., Fabian, T., Eaton, J.K. y Santiago J.G. (2007). Active Water Management for PEM Fuel Cells. Journal of Electrochemistry Society 154, 1049-1058.         [ Links ]

Liu, H., Ramnarayanan, R. y Logan, B.E. (2003). Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environmental. Science and Technology 38, 2281-2285.         [ Links ]

Liu, H. y Logan, B. (2004). Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environmental Science and Technology 14, 4040-4046.         [ Links ]

Liu, H., Cheng, S. y Logan, B. (2005). Power generation in feed batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration. Environmental Science and Technology 39, 5488-5493.         [ Links ]

Logan, B.E., Hamelers, B., Rozendal, R., Schroder, U., Keller, J., Freguia, S., Aelterman, P., Verstraete, W. y Rabaey, K. (2006). Microbial fuel cells: Methodology and technology. Environmental Science and Technology 40, 5181-5192.         [ Links ]

Logan, B.E. (2008). Microbial fuel cells. Editorial John Wiley & Sons, USA.         [ Links ]

Manohar, A.K., Bretschger, O., Nealson, K.H. y Mansfeld, F. (2008). The use of Electrochemical impedance spectroscopy (EIS) in the evaluation of the electrochemical properties of a microbial fuel cell. Bioelectrochemistry 72, 149-154.         [ Links ]

Oh, S., Min, B. y Logan, B.E. (2004). Cathode performance as a factor in electricity generation in microbial fuel cell. Environmental Science Technology 38, 4900-4904.         [ Links ]

Pham, T., Rabaey, K., Aelterman, P., Clauwaert, P., Schamphelaire, L., Boon, N. y Verstraete, W. (2006). Microbial fuel cells in relation to conventional anaerobic digestion technology. Engineering Life Science Journal 6, 285-292.         [ Links ]

Poggi-Varaldo, H.M., Alzate-Gaviria, L.M., Pérez-Hernández, A., Nevarez-Morillón, V.G. y Rinderknecht-Seijas, N.A. (2005). Side-by-side comparison of two systems of sequencing coupled reactors for anaerobic digestion of the organic fraction of municipal solid waste. Waste Management and Research 23, 270-80.         [ Links ]

Rabaey, K. y Verstraete, W. (2005). Microbial fuel cells: novel biotechnology for energy generation. Trends in Biotechnology 23, 291-298.         [ Links ]

Rabaey, K., Lissens, G. y Verstraete, W. (2005a). Microbial fuel cells: performances and perspectives. In: Biofuels for fuel cells: biomass fermentation towards usage in fuel cells, IWA publishing Nueva York.         [ Links ]

Rabaey, K., Boon, N., Höfte, M. y Verstraete, W. (2005b). Microbial phenazine production enhances electron transfer in biofuel cells. Environmental Science Technology 39, 3401-3408.         [ Links ]

Rismani-Yazdi, H., Christy, A.D., Carver, S.M., Yu, Z., Dehority, B.A. y Tuovinen, O.H. (2011). Effect of external resistance on bacterial diversity and metabolism in cellulose-fed microbial fuel cells. Bioresource Technology 102, 278-283.         [ Links ]

Rittmann, B. (2006). Microbial ecology to manage processes in environmental biotechnology. Trends in Biotechnology 24, 261-268.         [ Links ]

Rozendal, R.A., Hamelers, H.V. y Buisman, C.J. (2006). Effects of Membrane cation transport on pH and microbial fuel cell performance. Environmental Science Technology 40, 5181-5191.         [ Links ]

Rozendal, R.A., Hamelers, H.V., Rabaey, K., Keller, J. y Buisman, C.J. (2008). Towards practical implementation of bioelectrochemical wastewater treatment. Trends in Biotechnology 26, 450-459.         [ Links ]

Standard Methods (2005). For the Examination of water and wastewater 21st APHA, AWWA, WPCF Baltimore.         [ Links ]

Taeger, A., Vogel, C., Lehman, D., Jehnichen, D., Komber, H., Meier-Haack. J., Ochoa, N., Nunes, S. y Peinemann, K. (2003). Ion exchange membranes derived from sulfonated polyaramides. Reactive and Functional Polymers 57, 77-92.         [ Links ]

Ter Heijne, A., Hamelers, H.V., de Wilde, V., Rozendal, R.R. y Buisman, C.J. (2006). A Bipolar Membrane Combined with Ferric iron reduction as an alternative for platinum-based cathodes in microbial fuel cells. Environmental Science Technology 40, 5200-5205.         [ Links ]

Toshikatsu, S., Sata T. y Yang, W. (2002). Studies on cation-exchange membranes having permselectivity between cations in electrodialysis. Journal of Membrane Science 206, 31-6.         [ Links ]

Varó, P. (1996). Contribución al estudio sobre el comportamiento ambiental y degradación de jabones. Tesis de Doctorado, Departamento de Ingeniería Química, Universidad de Alicante, España.         [ Links ]

Vazquez-Larios, A.L., Solorza-Feria, O., Vázquez-Huerta, G., Ríos-Leal, E., Rinderkncht- Seijas, N. y Poggi-Varaldo, H. M. (2011). Internal And Resistance and Performance of Microbial Fuel Cell of Cell Configuration and Temperature. Journal of New Materials for Electrochemical Systems 14, 99-105.         [ Links ]

Wagner, N. (2002). Characterization of membrane electrode assemblies in polymer electrolyte fuel cells using a.c. impedance spectroscopy. Journal of Applied Electrochemical 32, 859-863.         [ Links ]

Wen-Wei, L., Guo ping, S., Xian-Wei, L. y Han-Qing, Y. (2011). Recent advances in the separators for microbial fuel cell. Bioresource Technology 102, 244-255.         [ Links ]

Zhang, X. (2005). Preparation and characterization of proton exchange membranes for direct methanol fuel cells. Ph.D. Thesis, Department of Chemical Engineering, Universitat Rovira I Virgili, Spain.         [ Links ]

Zhao, F., Slade, R.C. y Varcoe, J.R. (2009). Techniques for the study and development of microbial fuel cells: an electrochemical perspective. Chemical Society Reviews 38, 1926-1939.         [ Links ]

Zhuang, L. y Zhou, S. (2009). Substrate cross-conduction effect on the performance of serially connected microbial fuel cell stack. Electrochemistry Communications 11, 937-940.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons