SciELO - Scientific Electronic Library Online

 
vol.13 número1Un modelo cinético hetergéneo para la producción de biodieselDesempeño de un extrusor modificado para la producción de fibra poliéster hechas de PET reciclado índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de ingeniería química

versión impresa ISSN 1665-2738

Rev. Mex. Ing. Quím vol.13 no.1 Ciudad de México abr. 2014

 

Biotecnología

 

Survival under stress of halotolerant lactobacilli with probiotic properties

 

Supervivencia bajo condiciones de estrés de lactobacilos halotolerantes con características probióticas

 

G. Melgar-Lalanne, Y. Rivera-Espinoza, R. Farrera-Rebollo and H. Hernández-Sánchez*

 

Depto. de Graduados e Investigación en Alimentos, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Carpio y Plan de Ayala, Col. Sto. Tomás. México, D.F., CP 11340, México. *Corresponding author. E-mail: hhernan1955@yahoo.com Tel. 52-555-729-6000.

 

Received October 1, 2013.
Accepted December 3, 2013.

 

Abstract

Three halotolerant lactobacilli with probiotic potential previously isolated from Chiapas cheese (Lactobacillus plantarum, L. pentosus and L. acidipiscis) and two commercial lactobacilli with probiotic activity (L. casei Shirota and L. plantarum 299v) were evaluated for their safety and survival capacity under stress. All the strains could grow in optimal conditions up to 6 % NaCl and showed sub-lethal growth up to 16 % NaCl; all the strains could grow well at pH values between 4.0 and 8.0; with a sub-lethal growth up to pH values of 2.0 and 9.0. L. plantarum 299v could grow up to 2.0 % of bile salts, and L. acidipiscis up to 1.5 % of bile dried salts. All the strains could be considered safe because all of them were γ-hemolytic and gelatinase negative. Moreover, all the strains showed similar antibiotic resistance pattern and resisted the normal dose used in the food industry of nisin and lysozyme. With these results, it is possible to conclude that the two commercial Lactobacillus strains are halotolerant and that all the strains can be used in a wide range of food products.

Keywords: probiotics, halotolerant lactobacilli, osmotic stress, pH stress, bile salt stress, antibiotic resistance, non-conventional preservatives.

 

Resumen

Tres cepas de lactobacilos halotolerantes con potencial probiótico previamente aislados del queso de Chiapas (Lactobacillus plantarum, L. pentosus y L. acidipiscis) así como dos lactobacilos comerciales con actividad probiótica (L. casei Shirota y L. plantarum 299v) fueron evaluados para determinar su seguridad y supervivencia bajo condiciones de estrés. Todas las cepas crecieron en óptimas condiciones al 6% NaCl y mostraron un crecimiento subletal hasta el 16% NaCl. Todas las cepas crecieron bien a valores de pH entre 4.0 y 8.0, con un crecimiento subletal hasta pH 2.0 y pH 9.0. L. plantarum 299v creció hasta con un 2.0 % de bilis deshidratada y L. acidipiscis hasta con un 1.5 %. Todas las cepas pueden considerarse seguras ya que resultaron γ-hemolíticas y gelatinasa negativas. Además, todas mostraron patrones similares de resistencia a antibióticos. Finalmente, todas las cepas resistieron las dosis normalmente utilizadas en la industria de alimentos de nisina y lisozima. Con estos resultados se puede concluir que las dos cepas comerciales de lactobacilos son halotolerantes y que las cinco cepas pueden usarse en un amplio rango de productos alimenticios.

Palabras clave: probióticos, lactobacilos halotolerantes, estrés osmótico, estrés a pH, estrés biliar, resistencia a antibióticos, conservantes no convencionales.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Acknowledgements

This research was supported by Consejo Nacional de Ciencia y Tecnología (Conacyt) through the grant 206847 and Instituto Politécnico Nacional with the project SIP-20110353.

 

References

Ambalam, P., Ramoliya, J., Dave, J., and Vyas, B. (2013). Safety assessment of potential probiotic strains Lactobacillus rhamnosus 231 and Lactobacillus rhamnosus v92 in mouse model. International Journal of Bioassays 2, 333-337.         [ Links ]

Argyri, A. A., Zoumpopoulou, G., Karatzas, K.-A. G., Tsakalidou, E., Nychas, G.-J. E., Panagou, E. Z., and Tassou, C. C. (2013). Selection of potential probiotic lactic acid bacteria from fermented olives by in vitro tests. Food Microbiology 33, 282-291.         [ Links ]

Bao, Y., Zhang, Y., Li, H., Liu, Y., Wang, S., Dong, X., Su, F., Yao, G., Sun, T., and Zhang, H. (2012). In vitro screen of Lactobacillus plantarum as probiotic bacteria and their fermented characteristics in soymilk. Annals of Microbiology 62, 1311-1320.         [ Links ]

Beales, N. (2004). Adaptation of microorganisms to cold temperatures, weak acid preservatives, low pH, and osmotic stress: a review. Comprehensive Reviews in Food Science and Food Safety 3, 1-20.         [ Links ]

Bernardeau, M., Vernoux, J. P., Henri-Dubernet, S., and Guéguen, M. (2008). Safety assessment of dairy microorganisms: The Lactobacillus genus. International Journal of Food Microbiology 126, 278-285.         [ Links ]

Bertazzoni Minelli, E., Benini, A., Marzotto, M., Sbarbati, A., Ruzzenente, O., Ferrario, R., Hendriks, H., and Dellaglio, F. (2004). Assessment of novel probiotic Lactobacillus casei strains for the production of functional dairy foods. International Dairy Journal 14, 723-736.         [ Links ]

Borriello, S. P., Hammes, W. P., Holzapfel, W., Marteau, P., Schrezenmeir, J., Vaara, M., and Valtonen, V. (2003). Safety of probiotics that contain lactobacilli or bifidobacteria. Clinical Infectious Diseases 36, 775-777.         [ Links ]

Botes, M., van Reenen, C. A., and Dicks, L. M. T. (2008). Evaluation of Enterococcus mundtii ST4SA and Lactobacillus plantarum 423 as probiotics by using a gastro-intestinal model with infant milk formulations as substrate. International Journal of Food Microbiology 128, 362-370.         [ Links ]

Breuer, B., and Radler, F. (1996). Inducible resistance against nisin in Lactobacillus casei. Archives of Microbiology 165, 114-118.         [ Links ]

Cesselin, B., Derré-Bobillot, A., Fernandez, A., Lamberet, G., Lechardeur, D., Yamamoto, Y., Pedersen, M., Garrigues, C., Gruss, A., and Gaudu, P. (2011). Responses of lactic acid bacteria to oxidative stress. In E. Tsakalidou and K. Papadimitriou (Eds.), Stress Responses of Lactic Acid Bacteria, (pp. 111-127): Springer US.         [ Links ]

Cinque, B., Torre, C., Melchiorre, E., Marchesani, G., Zoccali, G., Palumbo, P., Marzio, L., Masci, A., Mosca, L., Mastromarino, P., Giuliani, M., and Cifone, M. (2011). Use of Probiotics for Dermal Applications. In M.-T. Liong (Ed.), Probiotics, vol. 21 (pp. 221-241): Springer Berlin Heidelberg.         [ Links ]

Ciulla, R., Clougherty, C., Belay, N., Krishnan, S., Zhou, C., Byrd, D., and Roberts, M. F. (1994). Halotolerance of Methanobacterium thermoautotrophicum delta H and Marburg. Journal of Bacteriology 176, 3177-3187.         [ Links ]

Corcoran, B., Stanton, C., Fitzgerald, G., and Ross, R. (2008). Life under stress: the probiotic stress response and how it may be manipulated. Current Pharmaceutical Design 14, 1382-1399.         [ Links ]

da Cunha, L. R., Ferreira, C. L. F., Durmaz, E., Goh, Y. J., Sanozky-Dawes, R., and Klaenhammer, T. R. (2012). Characterization of Lactobacillus gasseri isolates from a breast-fed infant. Gut Microbes 3, 15-24.         [ Links ]

Darilmaz, D. O., and Beyatli, Y. (2012). Investigating Hydrophobicity and the Effect of Exopolysaccharide on Aggregation Properties of Dairy Propionibacteria Isolated from Turkish Homemade Cheeses. Journal of Food Protection 75, 359-365.         [ Links ]

Davidson, P. M., and Critzer, F. (2012). Interventions to Inhibit or Inactivate Bacterial Pathogens in Foods. In O. A. Oyarzabal and S. Backert (Eds.), Microbial Food Safety, (pp. 189-202): Springer New York.         [ Links ]

De Angelis, M., and Gobbetti, M. (2004). Environmental stress responses in Lactobacillus: a review. Proteomics 4, 106-122.         [ Links ]

De Angelis, M., and Gobbetti, M. (2011). Stress Responses of Lactobacilli. In Stress Responses of Lactic Acid Bacteria, (pp. 219-249): Springer, EUA.         [ Links ]

Deepika, G., and Charalampopoulos, D. (2010). Surface and adhesion properties of Lactobacilli. Advances in Applied Microbiology 70, 127-152.         [ Links ]

Doyle, M. P., and Meng, J. (2006). Bacteria in food and beverage production. Prokaryotes 1, 797-811.         [ Links ]

Fordtran, J., Rector Jr, F., Ewton, M., Soter, N., and Kinney, J. (1965). Permeability characteristics of the human small intestine. Journal of Clinical Investigation 44, 1935.         [ Links ]

G-Alegría, E., López, I., Ruiz, J. I., Sáenz, J., Fernández, E., Zarazaga, M., Dizy, M., Torres, C., and Ruiz-Larrea, F. (2004). High tolerance of wild Lactobacillus plantarum and Oenococcus oeni strains to lyophilisation and stress environmental conditions of acid pH and ethanol. FEMS Microbiology Letters 230, 53-61.         [ Links ]

Giraffa, G. (2012). Selection and design of lactic acid bacteria probiotic cultures. Engineering in Life Sciences 12, 391-398.         [ Links ]

Gong, X., Yu, H., Chen, J., and Han, B. (2012). Cell surface properties of Lactobacillus salivarius under osmotic stress. European Food Research and Technology, 1-8.         [ Links ]

González-Olivares, L. G., Jiménez-Guzmán, J., Cruz-Guerrero, A., Rodríguez-Serrano, G., Gómez-Ruiz, L., and García-Garibay, M. (2011). Liberación de péptidos bioactivos por bacterias lácticas en leches fermentadas comerciales. Revista Mexicana de Ingeniería Química 10, 179-188.         [ Links ]

González-Sánchez, F., Azaola, A., Gutiérrez-López, G. F., and Hernández-Sánchez, H. (2010). Viability of microencapsulated Bifidobacterium animalis ssp. lactis BB12 in kefir during refrigerated storage. International Journal of Dairy Technology 63, 431-436.         [ Links ]

Guarner, F., and Schaafsma, G. (1998). Probiotics. International Journal of Food Microbiology 39, 237-238.         [ Links ]

Guinee, T., and Fox, P. (2004). Salt in cheese: physical, chemical and biological aspects. Cheese: Chemistry, Physics and Microbiology 1, 207-259.         [ Links ]

Hammes, W., and Hertel, C. (2006). The Genera Lactobacillus and Carnobacterium. In M. Dworkin, S. Falkow, E. Rosenberg, K.-H. Schleifer and E. Stackebrandt (Eds.), The Prokaryotes, (pp. 320-403): Springer US.         [ Links ]

Hamon, E., Horvatovich, P., Izquierdo, E., Bringel, F., Marchioni, E., Aoudé-Werner, D., and Ennahar, S. (2011). Comparative proteomic analysis of Lactobacillus plantarum for the identification of key proteins in bile tolerance. BMC Microbiology 11, 63.         [ Links ]

He, G., Shankar, R. A., Chzhan, M., Samouilov, A., Kuppusamy, P., and Zweier, J. L. (1999). Noninvasive measurement of anatomic structure and intraluminal oxygenation in the gastrointestinal tract of living mice with spatial and spectral EPR imaging. Proceedings of the National Academy of Sciences 96, 4586-4591.         [ Links ]

Husni, R. N., Gordon, S. M., Washington, J. A., and Longworth, D. L. (1997). Lactobacillus bacteremia and endocarditis: review of 45 cases. Clinical Infectious Diseases 25, 1048-1055.         [ Links ]

Jamaly, N., Benjouad, A., and Bouksaim, M. (2011). Probiotic potential of Lactobacillus strains isolated from known popular traditional moroccan dairy products. British Microbiology Research Journal 1, 79-94.         [ Links ]

Ji, Y., Kim, H., Park, H., Lee, J., Lee, H., Shin, H., Kim, B., Franz, C. M. A. P., and Holzapfel, W. H. (2013). Functionality and safety of lactic bacterial strains from Korean kimchi. Food Control 31, 467-473.         [ Links ]

Jiménez-Serna, A., and Hernández-Sánchez, H. (2011). Effect of Different Antibiotics and Non-Steroidal Anti-Inflammatory Drugs on the Growth of Lactobacillus casei Shirota. Current Microbiology 62, 1028-1033.         [ Links ]

Kailasapathy, K., and Chin, J. (2000). Survival and therapeutic potential of probiotic organisms with reference to Lactobacillus acidophilus and Bifidobacterium spp. Immunology and Cell Biology 78, 80-88.         [ Links ]

Karimi, R., Mortazavian, A. M., and Da Cruz, A. G. (2011). Viability of probiotic microorganisms in cheese during production and storage: a review. Dairy Science and Technology 91, 283-308.         [ Links ]

Larsen, H. (1986). Halophilic and halotolerant microorganisms-an overview and historical perspective. FEMS Microbiology Letters 39, 3-7.         [ Links ]

Luo, Y., Ma, B.-C., Zou, L.-K., Cheng, J.-G., Cai, Y.-H., Kang, J.-P., Li, B., Gao, X.-H., Wang, P., and Xiao, J.-J. (2012). Identification and characterization of lactic acid bacteria from forest musk deer feces. African Journal of Microbiology Research 6, 5871-5881.         [ Links ]

Mathur, S., and Singh, R. (2005). Antibiotic resistance in food lactic acid bacteria-a review. International Journal of Food Microbiology 105, 281-295.         [ Links ]

Mayorga-Reyes, L., Bustamante-Camilo, P., Gutiérrez-Nava, A., Barranco-Florido, E., and Azaola-Espinosa, A. (2009). Crecimiento, sobrevivencia y adaptación de Bifidobacterium infantis a condiciones ácidas. Revista Mexicana de Ingeniería Química 8, 259-264.         [ Links ]

Medina, P., and Baresi, L. (2007). Rapid identification of gelatin and casein hydrolysis using TCA. Journal of Microbiological Methods 69, 391-393.         [ Links ]

Melgar-Lalanne, G., Rivera-Espinoza, Y., Méndez, A. I. R., and Hernández-Sánchez, H. In Vitro evaluation of the probiotic potential of halotolerant lactobacilli isolated from a ripened tropical Mexican cheese. Probiotics and Antimicrobial Proteins, 1-13.         [ Links ]

Mendoza-Madrigal, A.G., Chanona-Pérez, J.J., Méndez-Méndez, J.V., Palacios-González, E., Calderón-Domínguez, G., Hernández-Sánchez, H. (2013). Detección de Lactobacillus plantarum 299V usando biosensores basados en microcantilevers con microscopía de fuerza dinámica. Revista Mexicana de Ingeniería Química 12, 379-389.         [ Links ]

Morales, F., Morales, J., Hernández, C., and Hernández-Sánchez, H. (2011). Isolation and Partial Characterization of Halotolerant Lactic Acid Bacteria from Two Mexican Cheeses. Applied Biochemistry and Biotechnology 164, 889-905.         [ Links ]

Nawaz, M., Wang, J., Zhou, A., Ma, C., Wu, X., Moore, J. E., Millar, B. C., and Xu, J. (2011). Characterization and transfer of antibiotic resistance in lactic acid bacteria from fermented food products. Current Microbiology 62, 1081-1089.         [ Links ]

NOM-121-SSA1-1994. Bienes y servicios. Quesos frescos, madurados y procesados. Especificaciones sanitarias. Diario Oficial de la Federación. Gobierno constitucional de los Estados Unidos Mexicanos. México D.F.         [ Links ]

Ouoba, L., Nyanga-Koumou, C., Parkouda, C., Sawadogo, H., Kobawila, S., Keleke, S., Diawara, B., Louembe, D., and Sutherland, J. (2010). Genotypic diversity of lactic acid bacteria isolated from African traditional alkaline-fermented foods. Journal of Applied Microbiology 108, 2019-2029.         [ Links ]

Özer, B., Kirmaci, H. A., Şenel, E., Atamer, M., and Hayaloğlu, A. (2009). Improving the viability of Bifidobacterium bifidum BB-12 and Lactobacillus acidophilus LA-5 in white-brined cheese by microencapsulation. International Dairy Journal 19, 22-29.         [ Links ]

Rabia, A., and Shah, N. P. (2011). Antibiotic resistance of probiotic organisms and safety of probiotic dairy products. International Food Research Journal 18.         [ Links ]

Ramos-Villarroel, A. Y., Soliva-Fortuny, R., and Martín-Belloso, O. (2011). Natural antimicrobials for food processing. Plant Sciences Reviews 2010, 219.         [ Links ]

Rasmussen, L. B., Lassen, A. D., Hansen, K., Knuthsen, P., Saxholt, E., and Fagt, S. (2010). Salt content in canteen and fast food meals in Denmark. Food and Nutrition Research, 54.         [ Links ]

Rodríguez, E., Arqués, J. L., Rodríguez, R., Peirotén, Á., Landete, J. M., and Medina, M. (2012). Antimicrobial properties of probiotic strains isolated from breast-fed infants. Journal of Functional Foods 4, 542-551.         [ Links ]

Rodríguez-Huezo, M. E., Lobato-Calleros, C., Reyes-Ocampo, J. G., Sandoval-Castilla, O., Perez-Alonso, C., and Pimentel-Gonzalez, D. J. (2011). Survivability of entrapped Lactobacillus rhamnosus in liquid-and gel-core alginate beads during storage and simulated gastrointestinal conditions. Revista Mexicana de Ingeniería Química 10, 353-361.         [ Links ]

Rojo-Bezares, B., Sáenz, Y., Poeta, P., Zarazaga, M., Ruiz-Larrea, F., and Torres, C. (2006). Assessment of antibiotic susceptibility within lactic acid bacteria strains isolated from wine. International Journal of Food Microbiology 111, 234-240.         [ Links ]

Rönkä, E., Malinen, E., Saarela, M., Rinta-Koski, M., Aarnikunnas, J., and Palva, A. (2003). Probiotic and milk technological properties of Lactobacillus brevis. International Journal of Food Microbiology 83, 63-74.         [ Links ]

Sako, T. (2010). The World's Oldest Probiotic: Perspectives for Health Claims. Probiotics and Health Claims, 17-36.         [ Links ]

Sánchez, B., Ruiz, L., Gueimonde, M., and Margolles, A. (2013). Omics for the study of probiotic microorganisms. Food Research International 54, 1061-1071.         [ Links ]

Sanders, M. E., Akkermans, L. M., Haller, D., Hammerman, C., Heimbach, J. T., Hörmannsperger, G., and Huys, G. (2010). Safety assessment of probiotics for human use. Gut Microbes 1, 164-185.         [ Links ]

Settanni, L., and Moschetti, G. (2010). Non-starter lactic acid bacteria used to improve cheese quality and provide health benefits. Food Microbiology 27, 691-697.         [ Links ]

Singh, T., Kaur, G., Malik, R., Schillinger, U., Guigas, C., and Kapila, S. (2012). Characterization of Intestinal Lactobacillus reuteri Strains as Potential Probiotics. Probiotics and Antimicrobial Proteins 4, 47-58.         [ Links ]

Sobrino-López, A., and Martín-Belloso, O. (2008). Use of nisin and other bacteriocins for preservation of dairy products. International Dairy Journal 18, 329-343.         [ Links ]

Tribst, A. A., Franchi, M. A., and Cristianini, M. (2008). Ultra-high pressure homogenization treatment combined with lysozyme for controlling Lactobacillus brevis contamination in model system. Innovative Food Science and Emerging Technologies 9, 265-271.         [ Links ]

Vinderola, C., and Reinheimer, J. (2003). Lactic acid starter and probiotic bacteria: a comparative. Food Research International 36, 895-904.         [ Links ]

Wang, J., and Fung, D. Y. (1996). Alkaline-fermented foods: a review with emphasis on pidan fermentation. Critical Reviews in Microbiology 22, 101-138.         [ Links ]

Whitehead, K., Versalovic, J., Roos, S., y Britton, R. A. (2008). Genomic and genetic characterization of the bile stress response of probiotic Lactobacillus reuteri ATCC 55730. Applied and Environmental Microbiology 74, 1812-1819.         [ Links ]

Wikler, M. A. (2006). Performance standards for antimicrobial susceptibility testing: Sixteenth informational supplement (Vol. 26): Clinical and Laboratory Standards Institute.         [ Links ]

Yu, Z., Zhang, X., Li, S., Li, C., Li, D., and Yang, Z. (2013). Evaluation of probiotic properties of Lactobacillus plantarum strains isolated from Chinese sauerkraut. World Journal of Microbiology and Biotechnology 29, 489-498.         [ Links ]

Zago, M., Fornasari, M. E., Carminati, D., Burns, P., Suárez, V., Vinderola, G., Reinheimer, J., and Giraffa, G. (2011). Characterization and probiotic potential of Lactobacillus plantarum strains isolated from cheeses. Food Microbiology 28, 1033-1040.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons