SciELO - Scientific Electronic Library Online

 
vol.13 número1Parámetros morfométricos, potencial zeta y tasa de crecimiento de Lactobacillus casei Shirota por efecto de diferentes sales biliaresAplicación de la metodología de superficie de respuesta para evaluar el efecto de la concentración de azúcar y de cultivos iniciadores comerciales sobre la cinética de fermentación del yogurt índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de ingeniería química

versión impresa ISSN 1665-2738

Rev. Mex. Ing. Quím vol.13 no.1 Ciudad de México abr. 2014

 

Ingeniería de alimentos

 

Características micromorfométricas de emulsiones de α-tocoferol obtenidas por microfluidización

 

Micromorphometric characteristics of α-tocopherol emulsions obtained by microfluidization

 

C. Cano-Sarmiento1, A. Monroy-Villagrana1, L. Alamilla-Beltrán1, H. Hernández-Sánchez1, M. Cornejo-Mazón2, D.I. Téllez-Medina1, C. Jiménez-Martínez1 and G.F. Gutiérrez-López1*

 

1 Departamento de Graduados e Investigación en Alimentos, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional. Carpio y Plan de Ayala s/n. Col. Santo Tomas. México, D. F. CP. 11340. *Corresponding author. E-mail: gusfgl@gmail.com.

2 Departamento de Biofísica, Escuela Nacional de Ciencias Biológicas-IPN.

 

Received November 22, 2013.
Accepted December 5, 2013.

 

Abstract

This work aimed to study the effect of different types of surfactants (non-ionic, cationic, anionic) on the micelle size and aggregation pattern of α-tocopherol emulsions produced by microfluidization prepared by using one and two cycles. Tween-20, Lecithin (PhC) and dodecyl sodium sulfate (SDS) were used as the non-ionic, cationic and anionic surfactants, respectively. Particle size was determined by image analysis and agglomeration was characterized with micromorphometric parameters such as fractal dimension (FD) and lacunarity (Λ). Average size was maximum (10.65 µm) when using Tween-20, whereas this parameter was the lowest (2.76 µm) when using PhC. The greater contributions to changes in FD and Λ were due to the presence of Tw and SDS. With PhC, it was possible to observe a system with high values of FD (1.92) and low values of Λ (0.15). PhC contributes to the stability of the emulsion despite of the concentration and number of microfluidization cycles and presented better dispersion and more irregular micelle structures than when using other surfactants.

Keywords: agglomerates, surfactant, fractal dimension, lacunarity and microfluidization.

 

Resumen

En este trabajo se estudió el efecto de diferentes tipos de surfactantes (no iónico, catiónico, aniónico) en el tamaño y forma de las micelas de emulsiones de α-tocoferol (AT) producidas por microfluidización usando uno y dos ciclos. Tween-20 (Tw), lecitina (PhC) y dodecil sulfato de sodio (SDS) se utilizaron como surfactante no iónico, catiónico y aniónico, respectivamente. El tamaño de partícula se determinó por análisis de imágenes y la presencia de aglomeración se caracterizó a través de parámetros micromorfométricos como la dimensión fractal (FD) y lagunaridad (Λ). Se alcanzó el tamaño máximo (10.65 µm) de micela cuando se utilizó Tw, mientras que este parámetro fue el más bajo (2.76 µm) cuando se utilizó PhC. Se encontró que las mayores contribuciones a los cambios en la FD y Λ son debido a la presencia de Tw y SDS. Con la PhC se pudo observar un sistema con valores altos de FD (1.92) y valores bajos de Λ (0.15). La PhC contribuyó a la estabilidad de la emulsión indepedientemente del número de ciclos de microfluidización y de su concentración y presentó una mejor dispersión y estructuras micelares más irregulares que con el uso de los otros surfactantes.

Palabras clave: aglomerados, surfactante, dimensión fractal, lagunaridad y microfluidización.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

References

Abramoff, M.D., Magalhaes, P.J. and Ram, S.J. (2004). Image Processing with ImageJ. Biophotonics International 11, 36-42.         [ Links ]

Barleita, B.J. and Barbosa-Canovas, G. (1993). Fractal analysis to characterize ruggedness changes in tapped agglomerated food powders. Journal of Food Science 58, 1030-1046.         [ Links ]

Boom, R. M. (2008). Emulsions: principles and preparation. In: Food Materials Science, (J.M. Aguilera and P.J. Lillford, eds.), Pp. 305-339. Springer, New York.         [ Links ]

Borel, P., Preveraud, D. and Desmarchelier, C. (2013). Bioavailability of vitamin E in humans: an update. Nutrition Reviews 71, 319-331.         [ Links ]

Bramley, P., Elmadfa, I., Kafatos, A., Kelly, F., Manios, Y., Roxborough, H., Schuch, W., Sheehy, P. and Wagner, K.-H. (2000). Review Vitamin E. Journal of the Science of Food and Agriculture 80, 913-938.         [ Links ]

Chaparro-Mercado, M.C., García-Ochoa, F., Hernández-Sánchez, H., Alamilla-Beltrán, L., Quintanilla-Carvajal, M.X., Cornejo-Mazón, M., Pedroza-Islas, R. and Gutierrez-López, G.F. (2012). Diseño de una estructura intersticial para una emulsión de aceite de semilla de uva por diseño de experimentos y superficie de respuesta. Revista Mexicana de Ingeniería Química 11, 11-21.         [ Links ]

Chen, C.C. and Wagner, G. (2004). Vitamin E nanoparticle for beverage applications. Chemical Engineering Research and Design 82, 1432-1437.         [ Links ]

Chiu, Y.C. and Yang, W.L. (1992). Preparation of vitamin-E microemulsion possessing highresistance to oxidation in air. Colloids and Surfaces 63, 311-322.         [ Links ]

Ciron, C.I.E., Gee, V.L., Kelly, A.L. and Auty, M.A.E. (2010). Comparison of the effects of high-pressure microfluidization and conventional homogenization of milk on particle size, water retention and texture of nonfat and low-fat yoghurts. International Dairy Journal 20, 314-320.         [ Links ]

Dalgleish, D.G., Tosh, S.M. and West, S. (1996). Beyond homogenization: The formation of very small emulsion droplets during the processing of milk by a microfluidizer. Netherlands Milk and Dairy Journal 50, 135-148.         [ Links ]

Dàvila, E. and Parés D. (2007). Structure of heatinduced plasma protein gels studied by fractal and lacunarity analysis. Food Hydrocolloids 21, 147-153.         [ Links ]

Eitenmiller, R.R. and Lee, J. (2004). Vitamin E: Food Chemistry, Composition, and Analysis. Marcel Dekker, New York.         [ Links ]

Feng, J.-L., Wang, Z.-W., Zhang, J., Wang, Z.-N. and Liu, F. (2009). Study on food-grade vitamin E microemulsions based on nonionic emulsifiers. Colloids and Surfaces, A: Physicochemical and Engineering Aspects 339, 1-6.         [ Links ]

Friberg, S., Larsson, K. and Sjoblom, J. (2004). Food Emulsions. Marcel Dekker, New York.         [ Links ]

Fujita, K., Iwasaki, M., Ochi, H., Fukuda, T., Ma, C., Miyamoto, T., Takitani, K., Negishi-Koga, T., Sunamura, S., Kodama, T., Takayanagi, H., Tamai, H., Kato, S., Arai, H., Shinomiya, K., Itoh, H., Okawa, A. and Takeda, S. (2012). Vitamin E decreases bone mass by stimulating osteoclast fusion. Nature Medicine 18, 589-594.         [ Links ]

Gawrysiak-Witukska, M., Siger, A. and Nogala-Kalucka, M. (2009). Degradation of tocopherols during near-ambient rapeseed drying. Journal of Food Lipids 16, 524-539.         [ Links ]

Gonnet, M., Lethuaut, L. and Boury, F. (2010). New trends in encapsulation of liposoluble vitamins. Journal of Controlled Release 146, 276-290.         [ Links ]

Griffin, W.C. (1949). Classification of Surface Active Agents by HLB. Journal of the Society of Cosmetic Chemists 1, 311-326.         [ Links ]

Hoppe, P.P. and Krennrich, G. (2000). Bioavailability and potency of natural-source and all-racemic α-tocopherol in the human: a dispute. European Journal of Nutrition 39, 183-93.         [ Links ]

Hunter, R.J. (1981). Zeta Potential in Colloid Science: Principles and Applications. Academic Press, London.         [ Links ]

Jafari, S.M., Assadpoor, E., He, Y. and Bhandari, B. (2008). Re-coalescence of emulsion droplets during high-energy emulsification. Food Hydrocolloids 22, 1191-1202.         [ Links ]

Jafari, S.M., He, Y. and Bhandari, B. (2007a). Optimization of nano-emulsions production by microfluidization. European Food Research and Technology 225, 733-741.         [ Links ]

Jafari, S.M., He, Y. and Bhandari, B. (2007b). Effectiveness of encapsulating biopolymers to produce sub-micron emulsions by energy emulsification techniques. Food Research International 40, 862-873.         [ Links ]

Jafari, S.M., He, Y. and Bhandari, B. (2006). Nano-emulsion production by sonication and microfluidization: A comparison. International Journal of Food Properties 9, 475-485.         [ Links ]

Karperien, A. (2004). FracLac Advanced User's Manual. Charles Sturt University, Australia.         [ Links ]

Kenkel, N.C. and Walker, D.J. (1996). Fractals in the biological sciences. Coenoses 11, 77-100.         [ Links ]

Klinkesorn, U., Sophanodora, P., Chinachoti, P. and McClements, D.J. (2004). Stability and rheology of corn oil-in-water emulsions containing maltodextrin. Food Research International 37, 851-859.         [ Links ]

Kralova, I. and Sjoblom, J. (2009). Surfactants used in food industry: A review. Journal of Dispersion Science and Technology 30, 1363-1383.         [ Links ]

Lobato-Calleros, C., Recillas-Mota, M.T., Espinosa-Solares, T., Alvarez-Ramirez, J. and Vernon-Carter, E.J. (2009). Microstructural and rheological properties of low-fat stirred yoghurts made with skim milk and multiple emulsions. Journal of Texture Studies 40, 657-675.         [ Links ]

Lopes, R. and Betrouni, N. (2009). Fractal and multifractal analysis: a review. Medical Image Analysis 13, 634-649.         [ Links ]

Mandelbrot, B.B. (1983). The Fractal Geometry of Nature. WH Freeman and Co., New York.         [ Links ]

Mayer, S., Weiss, J. and McClements, D.J. (2013a). Vitamin E-enriched nanoemulsions formed by emulsion phase inversion: Factors influencing droplet size and stability. Journal of Colloid and Interface Science 402, 122-30.         [ Links ]

Mayer, S., Weiss, J. and McClements, D.J. (2013b). Behavior of vitamin E acetate delivery systems under simulated gastrointestinal conditions: Lipid digestion and bioaccessibility of lowenergy nanoemulsions. Journal of Colloid and Interface Science 404, 215-22.         [ Links ]

Meraz-Torres L. S., Quintanilla-Carvajal M.X., Téllez-Medina D.I., Hernández-Sánchez H., Alamilla-Beltrán L. and Gutiérrez-López G.F. (2011). Water droplet spreading and recoiling upon contact with thick compact maltodextrin agglomerates. Journal of the Science of Food and Agriculture 91, 2594-2600.         [ Links ]

McClements, D.J. (2012). Nanoemulsions versus microemulsions: terminology, differences, and similarities. Soft Matter 8, 1719-1729.         [ Links ]

McClements, D.J. (2011). Edible nanoemulsions: fabrication, properties, and functional performance. Soft Matter 7, 2297-2316.         [ Links ]

McClements, D.J. (2005). Food Emulsions: Principles, Practices, and Techniques. CRC Press, Boca Raton.         [ Links ]

McClements, D.J. (1994). Ultrasonic determination of depletion flocculation in oil-in-water emulsions containing a non-ionic surfactant. Colloids and Surfaces A: Physicochemical and Engineering Aspects 90, 25-35.         [ Links ]

McClements, D.J., Decker, E.A., Park, Y. and Weiss, J. (2009). Structural design principles for delivery of bioactive components in nutraceuticals and functional foods. Critical Reviews in Food Science and Nutrition 49, 577-606.         [ Links ]

McClements, D.J. and Rao, J. (2011). Food-Grade nanoemulsions: Formulation, fabrication, performance, biological fate, and potential toxicity. Critical Reviews in Food Science and Nutrition 51, 285-330.         [ Links ]

Microfluidics (2008). Microfluidizer Processor User Guide. Microfluidics Corp. USA: Newton, USA.         [ Links ]

Montgomery, D.C. (1991). Design and Analysis of Experiments. Wiley and Sons, Inc., USA.         [ Links ]

Omar, K.A., Shan, L., Zou, X., Song, Z. and Wang, X. (2009). Effects of Two emulsifiers on yield and storage of flaxseed oil powder by response surface methodology. Pakistan Journal of Nutrition 8, 1316-1324.         [ Links ]

Pan, Y., Tikekar, R.V. and Nitin, N. (2013). Effect of antioxidant properties of lecithin emulsifier on oxidative stability of encapsulated bioactive compounds. International Journal of Pharmaceutics 450, 129-137.         [ Links ]

Pantic, I., Paunovic, J., Basta-Jovanovic, G., Perovic, M., Pantic, S. and Milosevic, N.T. (2013). Age-related reduction of structural complexity in spleen hematopoietic tissue architecture in mice. Experimental Gerontology 48, 926-932.         [ Links ]

Perrier-Cornet, J.M., Marie, P. and Gervais, P. (2005). Comparison of emulsification efficiency of protein-stabilized oil-in-water emulsions using jet, high pressure and colloid mill homogenization. Journal of Food Engineering 66, 211-217.         [ Links ]

Petrovic, L., Sovilj, V., Katona, J. and Milanovic, J. (2010). Influence of polymer-surfactant interactions on o/w emulsion properties and microcapsule formation. Journal of Colloid and Interface Science 342, 333-339.         [ Links ]

Quintanilla-Carvajal, M.X., Meraz-Torres, L. S., Alamilla-Beltrán, L., Chanona-Pérez, J.J., Terres-Rojas, E., Hernández-Sánchez, H., Jiménez-Aparicio, A.R. and Gutiérrez-López, G. F. (2011). Morphometric characterization of spray-dried microcapsules before and after α-tocopherol extraction. Revista Mexicana de Ingeniería Química 10, 301-312.         [ Links ]

Ricciarelli, R., Zingg, J. and Azzi, A. (2002). The 80 th Anniversary of Vitamin E: Beyond Its Antioxidant Properties. Biological Chemistry 383, 457-465.         [ Links ]

Saberi, A.H., Fang, Y. and McClements, D.J. (2013). Fabrication of vitamin E-enriched nanoemulsions: factors affecting particle size using spontaneous emulsification. Journal of Colloid and Interface Science 391, 95-102.         [ Links ]

Sagalowicz, L. and Leser, M.E. (2010). Delivery systems for liquid food products. Current Opinion in Colloid and Interface Science 15, 61-72.         [ Links ]

Schneider, C. (2005). Chemistry and biology of vitamin E. Molecular Nutrition and Food Research 49, 7-30.         [ Links ]

Schultz, S., Wagner, G., Urban, K. and Ulrich, J. (2004). High-pressure homogenization as a process for emulsion formation. Chemical Engineering and Technology 27, 361-368.         [ Links ]

Schulz, M.B. and Daniels, R. (2000). Hydroxypropylmethylcellulose (HPMC) as emulsifier for submicron emulsions: Influence of molecular weight and substitution type on the droplet size after high-pressure homogenization. European Journal of Pharmaceutics and Biopharmaceutics 49, 231-236.         [ Links ]

Schuster, S., Bernewitz, R., Guthausen, G., Zapp, J., Greiner, A.M., Köhler, K. and Schuchmann, H.P. (2012). Analysis of W1/O/W2 double emulsions with CLSM: Statistical image processing for droplet size distribution. Chemical Engineering Science 81, 84-90.         [ Links ]

Taisne, L., Walstra, P. and Cabane, B. (1996). Transfer of oil between emulsion droplets. Journal of Colloid and Interface Science 184, 378-390.         [ Links ]

Tansel, B. and Sevimoglu, O. (2006). Coalescence and size distribution characteristics of oil droplets attached on flocs after coagulation. Water, Air, and Soil Pollution 169, 293-302.         [ Links ]

Tcholakova, S., Denkov, N.D. and Danner, T. (2004). Role of surfactant type and concentration for the mean drop size during emulsification in turbulent flow. Langmuir 20, 7444-7458.         [ Links ]

Velazquez-Camilo, O., Bolaños-Reynoso, E., Rodriguez, E. and Alvarez-Ramirez, J. (2010). Characterization of cane sugar crystallization using image fractal analysis. Journal of Food Engineering 100, 77-84.         [ Links ]

Veleva, L., García-González, A. and Pérez, G. (2013). Fractal quantification of aluminum pitting corrosion induced by humid tropical climate. Revista Mexicana de Ingeniería Química 12, 65-72.         [ Links ]

Wangsakan, A., Chinachoti, P. and McClements D.J. (2004). Effect of surfactant type on surfactantmaltodextrin interactions: Isothermal titration calorimetry, surface tensiometry, and ultrasonic velocimetry study. Langmuir 20, 3913-3919.         [ Links ]

Wilde, P. (2000). Interfaces: their role in foam and emulsion behavior. Current Opinion in Colloid and Interface Science 5, 176-181.         [ Links ]

Yang, Y. and McClements, D.J. (2013a). Vitamin E and Vitamin E acetate solubilization in mixed micelles: Physicochemical basis of bioaccessibility. Journal of Colloid and Interface Science 405, 312-21.         [ Links ]

Yang, Y. and McClements, D.J. (2013b). Encapsulation of vitamin E in edible emulsions fabricated using a natural surfactant. Food Hydrocolloids 30, 712-720.         [ Links ]

Yang, Z. and Huffman, S.L. (2011). Review of fortified food and beverage products for pregnant and lactating women and their impact on nutritional status. Maternal and Child Nutrition 7, 19-43.         [ Links ]

Yao, X., Wang, N., Fang, Y., Phillips, G.O., Jiang, F., Hu, J., Lu, J., Xu, Q. and Tian, D. (2013). Impact of surfactants on the lipase digestibility of gum arabic-stabilized O/W emulsions. Food Hydrocolloids 33, 393-401.         [ Links ]

Zingg, J.M. and Azzi, A. (2004). Non-antioxidant activities of vitamin E. Current Medicinal Chemistry 11, 1113-1133.         [ Links ]

Zúñiga, R.N., Skurtys, O., Osorio, F., Aguilera, J.M. and Pedreschi, F. (2012). Physical properties of emulsion-based hydroxypropyl methylcellulose films: Effect of their microstructure. Carbohydrate Polymers 90, 1147-1158.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons