SciELO - Scientific Electronic Library Online

 
vol.13 número1Una contribución a la caracterización de protopectinasa-SE, una endo-polygalacturonasa de Geotrichum klebahnii con actividad solubilizadora de pectinaExpresión heteróloga de la endoquitinasa ech42 de Trichoderma atroviride en Pichia pastoris a bajas y elevadas tensiones de oxígeno disuelto índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Revista mexicana de ingeniería química

versão impressa ISSN 1665-2738

Rev. Mex. Ing. Quím vol.13 no.1 Ciudad de México Abr. 2014

 

Artículos de investigación

 

Refolding of lysozyme assisted by molecular chaperones immobilized in cellulose: the operational conditions that affect refolding yields

 

Replegamiento de lizosima asistida por chaperonas moleculares inmovilizados en celulosa: las condiciones operativas que afectan los rendimientos de replegamiento

 

A. Antonio-Pérez1, L. M. Aldaz-Martínez1, A. Meneses-Acosta2 and J. Ortega-López1*

 

1 Departamento de Biotecnología y Bioingeniería, CINVESTAV-IPN. Av. IPN 2508, Col. San Pedro Zacatenco, C.P. 07360, México D.F., México. *Corresponding author. E-mail: jortega@cinvestav.mx Tel. 52 55 5747-3800.

2 Facultad de Farmacia. Universidad Autónoma del Estado de Morelos. Av. Universidad 1001, Col. Chamilpa, C.P. 62010, Cuernavaca, Morelos México.

 

Received September 7, 2013.
Accepted November 20, 2013.

 

Abstract

Expression of recombinant proteins in Escherichia coli often leads to formation of inclusion bodies (IBs). To recover the protein activity, the IBs are isolated, solubilized and refolded. The protein refolding processes play a major role in the production of recombinant proteins; thus, various methodologies have been implemented, including dilution, dialysis and column chromatography with or without the assistance of molecular chaperones. Recently, it was demonstrated that the apical domain of GroEL (AD), DsbA and DsbC immobilized on cellulose improved the effciency of chromatographic refolding of rhodanese and lysozyme. Although immobilized chaperones and foldases greatly improve refolding yields, their use has been limited. To improve their potential use at the bioprocess scale, it is essential to understand the effects of operational conditions and additives on refolding yields. Therefore, we investigated the lysozyme refolding kinetics assisted by the apical domain of GroEL (AD), DsbA and DsbC in either soluble or immobilized on cellulose with different lysozyme concentrations, different chaperone:lysozyme ratios, absence of redox pairing, presence of glycerol and presence of high concentrations of GdnHCl and β-mercaptoethanol (β-ME). Our results provide insight to improve the use of molecular chaperones in the refolding of recombinant proteins expressed as inclusion bodies.

Keywords: protein refolding, inclusion bodies, chaperone immobilization, cellulose, lysozyme.

 

Resumen

Las proteínas recombinantes expresadas en Escherichia coli en muchas ocasiones se acumulan en forma de cuerpos de inclusión (IBs) por lo que para recuperar la actividad biológica de éstas, es necesario solubilizarlas de los IBs y llevar a cabo su replegamiento, proceso que representa una etapa limitante en la producción de proteínas recombinantes. Metodologías como la diálisis, dilución, uso de chaperones moleculares y técnicas cromatográficas, se han implementado con éxito en el laboratorio. Recientemente, para facilitar el uso de chaperones, se demostró que el dominio apical de GroEL (AD), y las oxidoreductasas DsbA y DsbC inmovilizadas en celulosa, asistieron eficientemente el replegamiento de rodanasa y lisozima. Sin embargo, para mejorar su potencial uso a una escala de producción, se requiere conocer cómo afectan las condiciones de operación y aditivos en los rendimientos de plegamiento. En este trabajo, evaluamos la cinética de replegamiento de lisozima asistida por dominio apical de GroEL (AD), y las oxidoreductasas DsbA y DsbC, solubles o inmovilizadas en celulosa usando diferentes concentraciones de lisozima, glicerol, GdnHCl y β-mercaptoethanol (β-ME), así como diferentes relaciones molares de chaperón: lisozima y la ausencia de un par redox. Estos resultados reportados pueden contribuir al diseño de estrategias para mejorar el uso de los chaperones molecular en el replegamiento de proteínas expresadas como cuerpos de inclusión.

Palabras clave: replegamiento de proteínas, cuerpos de inclusión, chaperones inmovilizados, celulosa, lisozima.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Acknowledgments

This work was partially supported by CINVESTAV-IPN, Consejo Nacional de Ciencia y Tecnología (CONACyT) grants 40387-Z and 128694 to JOL, scholarships to AAP and LARL, and Instituto de Ciencia y Tecnología del Distrito Federal (ICyTDF) grant PIFUTP08-108 to JOL. AAP also received support from ICyTDF (BM11-133). We thank Claudia Ivonne Flores-Pucheta and Ma. Eugenia Zuñiga-Trejo for their technical assistance and Silvia Zuñiga-Trejo for her secretarial support.

 

References

Altamirano M.M., R. Golbik R., Zahn R., Buckle A.M., Fersht A.R. (1997). Refolding chromatography with immobilized minichaperons. Proceeding of the National Academy of Sciences U.S.A. 94, 3576-3578.         [ Links ]

Antonio-Pérez A., Rivera-Hernández T., Aldaz-Martínez M.L., Ortega-López J. (2012). Oxidative refolding of lysozyme assisted by the GroEL Apical Domain, DsbA and DsbC immobilized in cellulose. Biotechnology and Bioprocess Engineering 17, 703-710.         [ Links ]

Antonio-Pérez A., Ramón-Luing L. A., Ortega-López J. (2012). Chromatographic refolding of rhodanese and lysozyme assisted by the GroEL apical domain of GroEL, DsbA, and DsbC immobilized in cellulose. Journal of Chromatography A, 1248, 122-129.         [ Links ]

Baneyx F., Mujacic M. (2004). Recombinant protein folding and misfolding in Escherichia coli. Nature Biotechnology 22, 1399-1408.         [ Links ]

Basu A., Li X., Leong S. S. J. (2011). Refolding of proteins from inclusion bodies: rational design and recipes. Applied Microbiology and Biotechnology 92, 241-251.         [ Links ]

Chow M.K. (2006). The REFOLD database: a tool for the optimization of protein expression and refolding. Nucleic Acids Research 34, D207-D212.         [ Links ]

De Bernardez C. (1998). Refolding of recombinant proteins. Current Opinions in Structural Biology 9, 157-163.         [ Links ]

Dong X.Y., Yang H., Sun Y. (2000). Lysozyme refolding with immobilized GroEL column chromatography. Journal of Chromatography A 878, 197-204.         [ Links ]

Gekko K., Timasheff S.N. (1981). Thermodynamic and kinetic examination of protein stabilization by glycerol. Biochemistry 20, 4677-4686.         [ Links ]

Gupta P., Hall C. K., Voegler A. C. (1998). Effect of denaturant and protein concentrations upon protein refolding and aggregation: A simple lattice model. Protein Science 7, 2642-2652.         [ Links ]

Hartl F.U., Hayer-Hartl M. (2009). Converging concepts of protein folding In vitro and In vivo. Nature Structural & Molecular Biology 16, 574-581.         [ Links ]

Jhamb K., Jawed A., Sahoo D.K. (2008). Immobilized chaperones: A productive alternative to refolding of bacterial inclusion body proteins. Process Biochemistry 43, 587-597.         [ Links ]

Jungbauer A., Kaar W. (2007). Current status of technical protein refolding. Journal of Biotechnology 128, 587-596.         [ Links ]

Jungbauer A., Kaar W., Schlegl R. (2004). Folding and refolding of proteins in chromatographic beds. Current Opinions in Biotechnology 15, 487-596.         [ Links ]

Koths K. (1995). Recombinant proteins for medical use: the attractions and challenges. Current Opinions in Biotechnology 6, 681-686.         [ Links ]

Langenhof M., Leong S.S.J., Pattenden L. K., Middelberg A.P.J. (2005). Controlled oxidative protein refolding using an ion-exchange column. Journal of Chromatography A. 1069, 195-201.         [ Links ]

Lu D., Liu Z. J. (2008). Dynamic redox environment-intensified disulfide bond shuffing for protein refolding In vitro: Molecular simulation and experimental validation. Physical Chemistry B 112, 15127-15133.         [ Links ]

Lyles M. M., Gilbert H. F. (1991). Catalysis of the oxidative folding of ribonuclease by a protein disulfide isomerase: Dependence of the rate on the composition of the redox buffer. Biochemistry 30, 613-619.         [ Links ]

Maskos K., Huber-Wunderlich M., Glockshuber R. (2003). DsbA and DsbC-catalyzed oxidative folding of proteins with complex disulfide bridge patterns In vitro and In vivo. Journal of Molecular Biology 325, 495-513.         [ Links ]

Middelberg A.R. (2002). Preparative protein refolding. Trends in Biotechnology 20, 437-443.         [ Links ]

Misawa S., Kumagai I. (1999). Refolding of therapeutic proteins produced in Escherichia coli as inclusion bodies. Peptide Science 51, 297-307.         [ Links ]

Mizobata T., Kawagoe M., Hongo K., Nagai J., Kawata Y. (2000). Refolding of target proteins from a "rigid" mutant chaperonin demonstrates a minimal mechanism of chaperonin binding and release. Journal of Biological Chemistry 275, 25600-25607.         [ Links ]

Ramon-Luing L.A., Cruz-Migoni A., Ruiz-Medrano R., Xoconostle-Cazares B., Ortega-Lopez J. (2006). One-step purification and immobilization in cellulose of the GroEL apical domain fused to a carbohydrate-binding module and its use in protein refolding. Biotechnology Letters 28, 301-307.         [ Links ]

Ruoppolo M., Freedman R. B., Pucci P., Marino G. (1996). Refolding by disulfide isomerization: the mixed disulfide between ribonuclease T1 and glutathione as a model refolding substrate. Biochemistry 34, 9380-9388.         [ Links ]

Teshima T., Kohda J., Kondo A., Taguchi H., Yohda M., Fukuda H. (2000). Preparation of Thermus thermophiles holo-chaperoninimmobilized microspheres with high ability to facilitate protein refolding. Biotechnology and Bioengineering 68, 184-190.         [ Links ]

Tsumoto K., Umetsu M., Yamada H., Ito T., Misawa S., Kumagai I. (2003). Practical considerations in refolding proteins from inclusion bodies. Protein Expression and Purification 28, 1-8.         [ Links ]

Zapun A., Missiakas D., Raina S., Creighton T.E. (1995). Structural and functional characterization of dsbc, a protein involved in disulfide bond formation in Escherichia coli. Biochemistry 34, 5075-5089.         [ Links ]

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons