SciELO - Scientific Electronic Library Online

 
vol.13 número1Tendencias en bioseparacionesBioprocesos basados en la aplicación de estreses abióticos en plantas para la producción de compuestos fenólicos antioxidantes de alto valor: una revisión índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Revista mexicana de ingeniería química

versão impressa ISSN 1665-2738

Rev. Mex. Ing. Quím vol.13 no.1 Ciudad de México Abr. 2014

 

Revisiones prácticas

 

Biocatalytic modification of food lipids: reactions and applications

 

Modificación biocatalítica de lípidos alimentarios: reacciones y aplicaciones

 

R. Baeza-Jiménez1, L.X. López-Martínez2 and H.S. García3*

 

1 Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM. Carr. Toluca-Atlacomulco Km 14.5, Unidad San Cayetano. 50200. Toluca, Estado de México, México.

2 Facultad de Química, Universidad Autónoma del Estado de México. Paseos Colón y Tollocan. 50000. Toluca, Estado de México, México.

3 UNIDA, Instituto Tecnológico de Veracruz. M.A. de Quevedo 2779, Col. Formando Hogar. Veracruz, Veracruz 91897, México. *Corresponding author. E-mail: hsgarcia@itver.edu.mx.

 

Received July 19, 2013.
Accepted October 24, 2013.

 

Abstract

The acylglycerol structure exemplifies the major lipid building block and therefore is an interesting structure to modify. Such modification is driven by: (1) consumers who have become more concerned about the relationship between diet and wellness, and (2) new and novel functional compounds can be prepared when the original structure of a lipid is modified. This trend has led to the design of functional foods or nutraceuticals, namely, fortified, enriched, modified and enhanced foods. Advances in the biochemistry and engineering of enzymatic reactions and reactors have improved the knowledge and understanding of such reaction systems and thus, make available a generation of structured lipids. In the present work, we detail several efforts carried out to prepare novel compounds, as well as industrial applications and possible future enzymatic procedures to obtain new food products.

Keywords: enzymes, lipids, modification.

 

Resumen

La estructura de un acilglicerol representa al mayor eje lipídico de construcción y por tanto es susceptible de modificación. Dicha modificación resulta de: (1) que los consumidores han tomado conciencia de la relación entre la dieta y su bienestar, y (2) nuevos y novedosos compuestos funcionales pueden prepararse cuando la estructura original de un lípido es modificada. Esta tendencia ha llevado al diseño de alimentos funcionales o nutracéuticos, tales como alimentos fortificados, enriquecidos, modificados y mejorados. Los avances en bioquímica e ingeniería de reacciones enzimáticas, así como del diseño de reactores, han mejorado el conocimiento y entendimiento de dichos sistemas de reacción y de esta forma hacen disponibles esta generación de lípidos estructurados. En el presente trabajo, se detallan varios trabajos realizados para preparar novedosos compuestos, así como sus aplicaciones industriales y posibles procesos enzimáticos para obtener nuevos productos alimentarios.

Palabras clave: enzimas, lípidos, modificación.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

References

Abigor, R.D., Marmer, W.N., Foglia, T.A., Jones, K.C., DiCiccio, R.J., Ashby, R. and Uadia, P.O. (2003). Production of cocoa butter-like fats by the lipase-catalyzed interesterification of palm oil and hydrogenated soybean oil. Journal of the American Oil Chemists' Society 80, 1193-1196.         [ Links ]

Abraham, G., Murray, M.A. and John, V.T. (1998). Interesterification selectivity in lipase catalyzed reactions of low molecular weight triglycerides. Biotechnology Letters 10, 555-558.         [ Links ]

Adlercreutz, D. and Wehtje, E. (2004). An enzymatic method for the synthesis of mixed-acid phosphatidylcholine. Journal of the American Oil Chemists' Society 81, 553-557.         [ Links ]

Adlercreutz, D., Budde, H. and Wehtje E. (2002). Synthesis of phosphatidylcholine with defined fatty acid in the sn-1 position by lipasecatalyzed esterification and transesterification reaction. Biotechnology and Bioengineering 78, 403-411.         [ Links ]

Akoh, C. (2002). Structured Lipids. In: Food Lipids. Chemistry, nutrition and biotechnology, Pp. 895-926. 2nd ed. Marcel Dekker, New York.         [ Links ]

Aloulou, A., Ben Ali, Y., Bezzine, S., Gargouri, Y. and Gelb, M.H. (2012). Phospholipases: an overview. In: Lipases and Phospholipases: Methods and Protocols, Methods in Molecular Biology, (Georgina Sandoval, ed). Springer Science + Business Media, New York, 64-65.         [ Links ]

AOCS Lipid Library. http://lipidlibrary.aocs.org/index.html.

Arcos, J.A., Garcia, H.S. and Hill Jr, C.G. (2000). Continuous enzymatic esterification of glycerol with (poly)unsaturated fatty acids in a packedbed reactor. Biotechnology and Bioengineering 68, 563-70.         [ Links ]

Aura, A.M., Forssell, P., Mustranta, A. and Poutanen, K. (1995). Transesterification of soy lecithin by lipase and phospholipase. Journal of the American Oil Chemists' Society 72, 1375-1379.         [ Links ]

Baeza Jiménez, R. and Garcia, H.S. (2013). Lípidos funcionales de origen animal. In: Los alimentos funcionales: Un nuevo reto para la industria de alimentos. CIAD-UACJ-ITV. In Press.         [ Links ]

Baeza-Jiménez, R., Miranda, K., Garcia, H.S. and Otero, C. (2013b). Lipase-catalysed glycerolysis of fish oil to obtain diacylglycerols. Grasas y Aceites 64, 237-242.         [ Links ]

Baeza-Jiménez, R., López-Martínez, L.X., Otero, C., Kim, I.H. and Garcia, H.S. (2013). Enzymecatalysed hydrolysis of phosphatidylcholine for the production of lysophosphatidylcholine. Journal of Chemical Technology and Biotechnology 88, 1859-1863.         [ Links ]

Baeza-Jiménez, R., Noriega-Rodríguez, J.A., Garcia. H.S. and Otero, C. (2012b). Structured phosphatidylcholine with elevated content of conjugated linoleic acid: optimization by response surface methodology. European Journal of Lipid Science and Technology 114, 1261-1267.         [ Links ]

Baeza-Jiménez R., Gonzalez-Rodriguez, J., Kim, I.H., Garcia, H.S. and Otero, C. (2012). Use of immobilized phospholipase A1-catalyzed acidolysis for the production of structured phosphatidylcholine with an elevated conjugated linoleic acid content. Grasas y Aceites 63, 44-52.         [ Links ]

Bloomer, S., Adlercreutz, P. and Mattiasson, B. (1990). Triglyceride interesterification by lipases. 1. Cocoa butter equivalents from a fraction of palm oil. Journal of the American Oil Chemists' Society 67, 519-524.         [ Links ]

Chang, M.K., Abraham, G. and John, V.T. (1990). Production of cocoa butter-like fat from interesterification of vegetable oils. Journal of the American Oil Chemists' Society 67, 832-834.         [ Links ]

Choi, J.H., Kim, B.H., Hong, S.I., Kim, C.T., Kim, C.J., Kim, Y. and Kim, I.H. (2012). Lipase-catalysed production of triacylglycerols enriched in pinolenic acid at the sn-2 position from pine nut oil. Journal of the Science of Food and Agriculture 92, 870-876.         [ Links ]

Chojnacka, A., Gladkowski, W., Kielbowicz, G. and Wawrzenczyk, C. (2009). Enzymatic enrichment of egg-yolk phosphatidylcholine with α-linolenic acid. Biotechnology Letters 31, 705-709.         [ Links ]

Chong, C.N., Hoh, Y.M. and Wang, C.W. (1992). Fractionation procedures for obtaining cocoa butter-like fat from enzymatically interesterified palm olein. Journal of the American Oil Chemists' Society 69, 137-140.         [ Links ]

Cyberlipid Center. http://www.cyberlipid.org/index.htm.

D'Arrigo, P. and Servi, S. (1997). Using phospholipases for phospholipid modification. Trends in Biotechnology 15, 90-96.         [ Links ]

Doig, S.D. and Diks, R.M.M. (2003). Toolbox for modification of the lecithin head group. European Journal of Lipid Science and Technology 105, 368-76.         [ Links ]

Du, J., Wu, D., Hou, X. and Feng, C. (2010). Kinetic studies on lipase catalyzed transesterification of phosphatidylcholine with α-linolenic acid ethyl ester. International Journal of Chemistry 2, 77-85.         [ Links ]

Egger, D., Wehtje, E. and Adlercreutz, P. (1997). Characterization and optimization of phospholipase A2 catalyzed synthesis of phosphatidylcholine. Biochimica et Biophysica Acta 1343, 76-84.         [ Links ]

Fahy, E., Subramaniam, S., Brown, H.A., Glass, C.K., Merrill Jr., A.H. and Robert, C. (2005). A comprehensive classification system for lipids. European Journal of Lipid Science and Technology 107, 337-364.         [ Links ]

Fahy, E., Subramaniam, S., Murphy, R.C., Nishijima, M., et al. (2009). Update of the LIPID MAPS comprehensive classification system for lipids. Journal of Lipid Research 50, S9-S14.         [ Links ]

Fogliano, V. and Vitaglione, P. (2005). Functional foods: Planning and development. Molecular Nutrition & Food Research 49, 256 - 262.         [ Links ]

Fureby, A.M., Tian, L., Adlercreutz, P. and Mattiasson, B. (1997). Preparation of diglycerides by lipase-catalyzed alcoholysis of triglycerides. Enzyme and Microbial Technology 20, 198-206.         [ Links ]

Garcia, H.S., Kim, I., López-Hernández, A. and Hill Jr. CG. (2008). Enrichment of lecithin with n3 fatty acids by acidolysis using immobilized phospholipase A1. Grasas y Aceites 59, 368-374.         [ Links ]

Garcia, H.S., Arcos, J.A., Ward, D.J. and Hill Jr C.G. (2000). Synthesis of glycerides containing n-3 fatty acids and conjugated linoleic acid by solvent-free acidolysis of fish Oil. Biotechnology and Bioengineering 70, 587-591.         [ Links ]

Guo, Z., Vikbjerg, A.F. and Xu, X. (2005). Enzymatic modification of phospholipids for functional applications and human nutrition. Biotechnology Advances 23, 203-259.         [ Links ]

Haraldsson, G.G. and Thorarensen, A. (1999). Preparation of phospholipids highly enriched with n-3 polyunsaturated fatty acids by lipase. Journal of the American Oil Chemists' Society 76, 1143-1149.         [ Links ]

Haas, M.J., Scott, K., Jun, W. and Janssen, G. (1994). Enzymatic phosphatidylcholine hydrolysis in organic solvents: An examination of selected commercially available lipases. Journal of the American Oil Chemists' Society 71, 483-490.         [ Links ]

Hong, S.I., Kim, Y., Yoon, S.W., Cho, S.Y. and Kim, I.H. (2012). Synthesis of CLA-enriched triacylglycerol by Candida antarctica lipase under vacuum. European Journal of Lipid Science and Technology 114, 1044-1051.         [ Links ]

Hopkins, P.N. (2003) Familial hypercholesterolemiaimproving treatment and meeting guidelines. International Journal of Cardiology 89, 13-23.         [ Links ]

Hossen, M. and Hernandez, E. (2005). Enzyme catalyzed synthesis of structured phospholipids with conjugated linoleic acid. European Journal Lipid Science Technology 107, 730-736.         [ Links ]

Huesca-Toral, A., López-Hernández A., Angulo-Guerrero, J.O., Hill Jr, C.G. and García, H.S. (2005). Synthesis of CLA-enriched triacylglycerols by enzymatic polyesterification in a solvent-free medium. Revista Mexicana de Ingeniería Química 4, 75-87.         [ Links ]

Jaeger, K.E., Dijkstra, B.W. and Reetz, M.T. (1999). Bacterial Biocatalysts: Molecular Biology, three-dimensional structures, and biotechnological applications of lipases. Annual Reviews of Microbiology 53, 315-351.         [ Links ]

Johnson, L.A. (1998). Recovery, refining, converting, and stabilizing edible fats and oils. In: Food lipids Chemistry, Nutrition and Biotechnology (Akoh C.C. and Min D.B., eds.) New York: Marcel Dekker, 181-228.         [ Links ]

Kamphuis, M.M.J.W., Mela, D.J. and Westerterp-Plantenga, M.S. (2003). Diacylglycerols affect substrate oxidation and appetite in humans. American Journal of Clinical Nutrition 77, 1133-1139.         [ Links ]

Kim, I.H., Garcia, H.S. and Hill Jr. C.G. (2007). Phospholipase A1-catalyzed synthesis of phospholipids enriched in n-3 polyunsaturated fatty acid residues. Enzyme and Microbial Technology 40, 1130-1135.         [ Links ]

Kim, I.H., Garcia, H.S. and Hill Jr. C.G. (2010). Synthesis of Structured Phosphatidylcholine Containing n-3 PUFA Residues via Acidolysis Mediated by Immobilized Phospholipase A1. Journal of the American Oil Chemists' Society 87, 1293-1299.         [ Links ]

Kim J, Lee CS, Oh J, Kim BG. 2001. Production of egg yolk lysolecithin with immobilized phospholipase A2. Enzyme and Microbial Technology 29, 587-592.         [ Links ]

Kim, J. and Kim, B. (2000). Lipase-catalyzed synthesis of lysophosphatidylcholine using organic co-solvent for in situ water activity control. Journal of the American Oil Chemists' Society 77, 791-797.         [ Links ]

Kim, J.K., Kim, M.K., Chung, G.H., Choi, C.S. and Rhee, J.S. (1997). Production of lysophospholipid using extracellular phospholipase A1 from Serratia sp. MK1. Journal of Microbiology and Biotechnology 7, 258-261.         [ Links ]

Knapp, A.W. (2007). Cocoa and chocolate: their history from plantation to consumer. Whitefish, M.T.: Kessinger Publishing LLC.         [ Links ]

Kolovou, G., Daskalova, D., Mastorakou, I., Anagnostopoulou, K. and Cokkinos, D.V. (2004). Regression of Achilles tendon xantomas evaluated by CT scan after hypolipidemic treatment with simvastatin. Angiology 55, 335-339.         [ Links ]

Lilja-Hallberg, M. and Härröd, M. (1995). Enzymatic and non-enzymatic esterification of long polyunsaturated fatty acids and lysophosphatidylcholine in isooctane. Biocatalysis and Biotransformations 12, 55-66.         [ Links ]

Lopez-Hernandez, A., Otero, C., Hernán,andez-Martín E., Garcia, H.S. and Hill Jr, C.G. (2007). Interesterification in batch and continuous flow processes of sesame oil and fully hydrogenated fat catalyzed by immobilized lipase. European Journal of Lipid Science and Technology 109, 1147-1159.         [ Links ]

Luddy, F.E., Hampson, J.W., Herb, S.F. and Rothbart, H.L. (1973). Development of edible tallow fractions for specialty fat Uses. Journal of the American Oil Chemists' Society 50, 240-244.         [ Links ]

Madoery, R., Gattone, C.G. and Fidelio, G. (1995). Bioconversion of phospholipids by immobilized phospholipase A2. Journal of Biotechnology 40, 145-153.         [ Links ]

Martínez, C.E, Vinay, J.C., Brieva, R., Hill Jr, C.G. and Garcia, H.S. (2005). Preparation of mono- and diacylglycerols by enzymatic esterification of glycerol with conjugated linoleic acid in hexane. Applied Biochemistry and Biotechnology 125, 63-75.         [ Links ]

McGinley, L. (1991). Analysis and quality control for processing and processed fats. In: J.B. Rossel & J.L. Pritchard (Eds.), Analysis of Oilseeds, Fats and Fatty Foods (pp. 441-498). London, UK: Elsevier Applied Science.         [ Links ]

Miranda, K., Baeza-Jiménez, R., Noriega-Rodríguez, J.A., Garcia, H.S. and Otero, C. (2013). Optimization of structured diacylglycerols production containing ω-3 via enzymecatalysed glycerolysis of fish oil. European Food Research and Technology 236, 435-440.         [ Links ]

Murase, T., Aoki, M., Wakisaka, T., Hase, T. and Tokimitsu, I. (2002). Anti-obesity effect of dietary diacylglycerol in C57BL/6J mice: Dietary diacylglycerol stimulates intestinal lipid metabolism. Journal of Lipid Research 43, 1312-1319.         [ Links ]

Mustranta, A., Forsell, P., Aura, A.M., Suortti, T. and Poutanen K. (1994). Modification of phospholipids with lipases and phospholipases. Biocatalysis 9, 181-194.         [ Links ]

Mutua, L.N. and Akoh, C.C. (1993). Lipasecatalyzed modification of phospholipids: Incorporation of n-3 fatty acids into biosurfactants. Journal of the American Oil Chemists' Society 71, 125-128.         [ Links ]

Nagao, T., Watanabe, H., Goto, N., Onizawa, K. et al., (2000). Dietary diacylglycerol suppresses accumulation of body fat compared to triacylglycerol in men in a double-blind controlled trial. Journal of Nutrition 130, 792-797.         [ Links ]

Nelson, D.L. and Cox, M.M. (2004). Lipids. In: Lehninger Principles of Biochemistry. Pp. 343-346. W. H. Freeman; Fourth Edition.         [ Links ]

Nor Aini, I. and Miskandar, M.S. (2007). Utilization of palm oil and palm products in shortenings and margarines. European Journal of Lipid Science and Technology 109, 422-432.         [ Links ]

Osborn, H.T. and Akoh, C.C. (2002). Structured Lipids-Novel Fats with Medical, Nutraceutical, and Food Applications. Comprehensive Reviews in Food Science and Food Safety 1, 110-120.         [ Links ]

Peng, L., Xu, X., Mu, H., Høy, C.E. and Adler-Nissen J. (2002). Production of phospholipids by lipase-catalyzed acidolysis: optimization using response surface methodology. Enzyme and Microbial Technology 31, 523-532.         [ Links ]

Prentice, A.M. and Poppitt, S.D. (1996). Importance of energy density and macronutrients in the regulation of energy intake. International Journal of Obesity and Related Metabolic Disorders 20, S18-S23.         [ Links ]

Reddy, J.R.C, Vijeeta, T., Karuna, M.S.L., Rao, B.V.S.K. and Prasad, R.B.N. (2005). Lipasecatalyzed preparation of palmitic and stearic acid-rich phosphatidylcholine. Journal of the American Oil Chemists' Society 82, 727-730.         [ Links ]

Richmond, G.S. and Smith, T.K. (2011). Phospholipases A1. International Journal of Molecular Science 12, 588-612.         [ Links ]

Sarney, D.B., Fregapane, G. and Vulson, E.N. (1994). Lipase-catalyzed synthesis of lysophospholipids in a continuous bioreactor. Journal of the American Oil Chemists' Society 71, 93-96.         [ Links ]

Sharma, R., Chistib, Y. and Chand-Banerjeea, U. (2001). Production, purification, characterization, and applications of lipases. Biotechnology Advances 19, 627-662.         [ Links ]

Sinram, R.D. (1991). The added value of specialty lecithins. Oil Mill Gazetteer 22, 6 (September).         [ Links ]

Svensson, I., Wehtje, E., Adlercreutz, P. and Mattiasson, B. (1994). Effects of water activity on reaction rates and equilibrium positions in enzymatic esterifications. Biotechnology and Bioengineering 44, 549-556.         [ Links ]

Svensson, I., Adlercreutz, P. and Mattiasson, B. (1992). Lipase-catalyzed transesterification of phosphatidylcholine at controlled water activity. Journal of the American Oil Chemists' Society 69, 986-991.         [ Links ]

Torres, C.F., Garcia, H.S., Ries, J.J. and Hill Jr, C.G. (2001). Esterification of glycerol with conjugated linoleic acid and long-chain fatty acids from fish oil. Journal of the American Oil Chemists' Society 78, 1093-1098.         [ Links ]

Vijeeta, T., Reddy, J.R.C., Rao, B.V.S.K., Karuna, M.S.L. and Prasad, R.B.N. (2004). Phospholipase-mediated preparation of 1ricinoleoyl-2-acyl-sn-glycero-3-phosphocholine from soya and egg phosphatidylcholine. Biotechnology Letters 26, 1077-1080.         [ Links ]

Vikbjerg, A.F., Mu, H. and Xu, X. (2007). Synthesis of structured phospholipids by immobilized phospholipase A2 catalyzed acidolysis. Journal of Biotechnology 128, 545-554.         [ Links ]

Vikbjerg, A.F., Mu, H. and Xu, X. (2005). Parameters affecting incorporation and byproduct formation during the production of structured phospholipids by lipase-catalyzed acidolysis in solvent-free system. Journal of Molecular Catalysis B-Enzymatic 36, 14-21.         [ Links ]

Virto, C. and Adlercreutz, P. (2000). Lysophosphatidylcholine synthesis with Candida antarctica lipase B (Novozym 435). Enzyme and Microbial Technology 26, 630-635.         [ Links ]

Willis, W. and Marangoni, A.G. (2002). Enzymatic Interesterification. In: Food Lipids. Chemistry, nutrition and biotechnology, Pp. 857-893. 2nd ed. Marcel Dekker, New York.         [ Links ]

Willis, W.M., Lencki, R.W. and Marangoni, A.G. (1998). Lipid modification strategies in the production of nutritionally functional fats and oils. Critical Reviews in Food Science and Nutrition 38, 639-674.         [ Links ]

Xu, X. (2003). Engineering of enzymatic reactions and reactors for lipid modification and synthesis. European Journal of Lipid Science and Technology 105, 289-304.         [ Links ]

Yagi, T., Nakanishi, T., Yoshizawa, Y. and Fukui, F. (1990). The enzymatic acyl exchange of phospholipids with lipases. Journal of Fermentation and Bioengineering 69, 23-25.         [ Links ]

Yamamoto, Y., Hosokawa, M. and Miyashita, K. (2006). Production of phosphatidylcholine containing conjugated linoleic acid mediated by phospholipase A2. Journal of Molecular Catalysis B-Enzymatic 41, 92-96.         [ Links ]

Yuan, Q.G., Ramprasath, V.R., Harding, S.V., Rideout, T.C. et al., (2010). Diacylglycerol oil reduces body fat but does not alter energy or lipid metabolism in overweight, hypertriglyceridemic women. Journal of Nutrition 140, 1122-1126.         [ Links ]

Zaidi, A., Gainer, J.L., Carta, G., Mrani, A., Kadiri, T., Belarbi, Y. and Mir, A. (2002). Esterification of fatty acids using nylon-immobilized lipase in n-hexane: kinetic parameters and chain-length effects. Journal of Biotechnology 93, 209-216.         [ Links ]

Zaidi, A., Gainer, J.L. and Carta, G. (1995). Fatty Acid Esterification Using Nylon-Immobilized Lipase. Biotechnology and Bioengineering 48, 601-605.         [ Links ]

Zarevúka, M. and Zdenĕk W. (2008). Plant Products for Pharmacology: Application of Enzymes in Their Transformations. International Journal of Molecular Science 9, 2447-2473.         [ Links ]

Zhang, X., Li, L., Xie, H., Liang Z., Su J., Liu G. and Li B. (2013). Effect of temperature on the crystalline form and fat crystal network of two model palm oil-based shortenings during storage. Food and Bioprocess Technology DOI 10.1007/s11947-013-1078-8.         [ Links ]

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons