SciELO - Scientific Electronic Library Online

 
vol.13 número1Tendencias en bioseparaciones índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Revista mexicana de ingeniería química

versão impressa ISSN 1665-2738

Rev. Mex. Ing. Quím vol.13 no.1 Ciudad de México Abr. 2014

 

Revisiones

 

Nanobiotechnology for medical diagnostics

 

Nanobiotecnología para el diagnóstico médico

 

K. Kourentzi1 and R. C. Willson1,2,3,4*

 

1 Department of Chemical & Biomolecular Engineering, University of Houston, Houston, TX 77204, USA.

2 Department of Biology & Biochemistry, University of Houston, Houston, TX 77004, USA.

3 Houston Methodist Research Institute, Houston, TX, 77030, USA.

4 Centro de Biotecnología FEMSA, Departamento de Biotecnología e Ingeniería de Alimentos, Tecnológico de Monterrey, Monterrey, NL 64849, Mexico. *Corresponding author. E-mail: willson@uh.edu, +1-713-743-4308.

 

Received June 14, 2013.
Accepted December 31, 2013.

 

Abstract

Traditional core areas of chemical engineering education are being extended by new expertise in science and engineering at the molecular and nanometer scale. Chemical engineers have been pursuing a dynamic role in the design and development of new generations of diagnostic platforms exploiting different nanomaterials and "are the forefront of this rapidly developing field, with the potential to propel discoveries from the bench to bedside" (Ruan et al., 2012).

Nanobiotechnology leverages existing expertise from engineering and biology, promotes interdisciplinary discoveries and addresses key elements of next-generation clinical applications.

In the present review we attempt to give an overview of the latest technologies that in our opinion hold great promise as the basis of powerful biodiagnostic tools.

Keywords: bioassays, ELISA, Immuno-PCR, phage, nanofabrication.

 

Resumen

Las áreas tradicionales de la educación en ingeniería química están siendo extendidas por nuevas experiencias en ciencia e ingeniería a escalas molecular y nanométrica. Los ingenieros químicos han estado persiguiendo jugar un rol dinámico en el diseño y desarrollo de nuevas generaciones de plataformas de diagnóstico explotando diferentes nanomateriales y "son el frente de este campo que se encuentra rápidamente en desarrollo, con el potencial de impulsar descubrimientos que vayan desde el laboratorio hasta el tratamiento de pacientes." (Ruan et al., 2012).

La nanobiotecnología sirve como palanca en la experiencia que se tiene en ingeniería y biología, promueve descubrimientos interdisciplinarios y atiende elementos clave de la siguiente generación de aplicaciones clínicas.

En la presente revisión tratamos de proporcionar un visión general de las últimas tecnologías que en nuestra opinión constituyen una gran promesa como base para herramientas poderosas de diagnóstico.

Palabras clave: bioensayos, ELISA, Inmuno-PCR, fago, nanofabricación.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Acknowledgments

RCW acknowledges the Robert A. Welch Foundation for support under grant E-1264, and the Huffington-Woestemeyer Professorship.

 

References

Adler, M., Wacker, R. and Niemeyer, C. M. (2008). Sensitivity by combination: immuno-PCR and related technologies. Analyst 133, 702-718.         [ Links ]

Alivisatos, A. P. (1996). Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 933-937.         [ Links ]

Bao, Y. P., Wei, T. F., Lefebvre, P. A., An, H., He, L., Kunkel, G. T. and Muller, U. R. (2006). Detection of protein analytes via nanoparticle-based bio bar code technology. Analytical Chemistry 78, 2055-2059.         [ Links ]

Baselt, D. R., Lee, G. U., Natesan, M., Metzger, S. W., Sheehan, P. E. and Colton, R. J. (1998). A biosensor based on magnetoresistance technology. Biosensors and Bioelectronics 13, 731-739.         [ Links ]

Booth, M. A., Vogel, R., Curran, J. M., Harbison, S. and Travas-Sejdic, J. (2013). Detection of target-probe oligonucleotide hybridization using synthetic nanopore resistive pulse sensing. Biosensors and Bioelectronics 45, 136-140.         [ Links ]

Burbulis, I., Yamaguchi, K., Yu, R., Resnekov, O. and Brent, R. (2007). Quantifying small numbers of antibodies with a 'near-universal' protein-DNA chimera. Nature Methods 4, 1011-1013.         [ Links ]

Burg, T. P., Godin, M., Knudsen, S. M., Shen, W., Carlson, G., Foster, J. S., Babcock, K. and Manalis, S. R. (2007). Weighing of biomolecules, single cells and single nanoparticles in fluid. Nature 446, 1066-1069.         [ Links ]

Cai, D., Ren, L., Zhao, H., Xu, C., Zhang, L., Yu, Y., Wang, H., Lan, Y., Roberts, M.F., Chuang, J.H., Naughton, M.J., Ren, Z. and Chiles, T.C. (2010). A molecular -imprint nanosensor for ultrasensitive detection of proteins. Nature Nanotechnology 5, 597-601.         [ Links ]

Churana, R., Godin, M., Knudsen, S. and Manalis, S. (2007). Mass-based readout for agglutination assays. Applied Physics Letters 91, e193902.         [ Links ]

Cui, Y., Wei, Q., Park, H. and Lieber, C. M. (2001). Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293, 1289-1292.         [ Links ]

de la Rica, R. and Stevens, M. M. (2012). Plasmonic ELISA for the ultrasensitive detection of disease biomarkers with the naked eye. Nature Nanotechnology 7, 821-824.         [ Links ]

Douglas, T. and Young, M. (2006). Viruses: making friends with old foes. Science 312, 873-875.         [ Links ]

Drescher, D., Giesen, C., Traub, H., Panne, U., Kneipp, J. and Jakubowski, N. (2012). Quantitative imaging of gold and silver nanoparticles in single eukaryotic cells by laser ablation ICP-MS. Analytical Chemistry 84, 9684-9688.         [ Links ]

Elghanian, R., Storhoff, J. J., Mucic, R. C., Letsinger, R. L. and Mirkin, C. A. (1997). Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277, 1078-1081.         [ Links ]

Fritz, J., Baller, M. K., Lang, H. P., Rothuizen, H., Vettiger, P., Meyer, E., Guntherodt, H., Gerber, C. and Gimzewski, J. K. (2000). Translating biomolecular recognition into nanomechanics. Science 288, 316-318.         [ Links ]

Garza-Licudine, E., Deo, D., Yu, S., Uz-Zaman, A. and Dunbar, W. B. (2010). Portable nanoparticle quantization using a resizable nanopore instrument -the IZON qNano. Conference proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2010, 5736-5739.         [ Links ]

Gaster, R. S., Hall, D. A., Nielsen, C. H., Osterfeld, S. J., Yu, H., Mach, K. E., Wilson, R. J., Murmann, B., Liao, J. C., Gambhir, S. S. and Wang, S. X. (2009). Matrix-insensitive protein assays push the limits of biosensors in medicine. Nature Medicine 15, 1327-1332.         [ Links ]

Giljohann, D. A. and Mirkin, C. A. (2009). Drivers of biodiagnostic development. Nature 462, 461-464.         [ Links ]

He, B., Morrow, T. J. and Keating, C. D. (2008). Nanowire sensors for multiplexed detection of biomolecules. Current Opinion in Chemical Biology 12, 522-528.         [ Links ]

He, J., Evers, D. L., O'Leary, T. J. and Mason, J. T. (2012). Immunoliposome-PCR: a generic ultrasensitive quantitative antigen detection system. Journal of Nanobiotechnology 10, 26.         [ Links ]

Hirsch, L. R., Halas, N. J. and West, J. L. (2005). Whole-blood immunoassay facilitated by gold nanoshell-conjugate antibodies. Methods in Molecular Biology 303, 101-111.         [ Links ]

Ivers, S. N., Baranov, S. A., Sherlock, T., Kourentzi, K., Ruchhoeft, P., Willson, R. and Larin, K. V. (2010). Depth-resolved imaging and detection of micro-retroreflectors within biological tissue using Optical Coherence Tomography. Biomedical Optics Express 1, 367-377.         [ Links ]

Jia, C. P., Zhong, X. Q., Hua, B., Liu, M. Y., Jing, F. X., Lou, X. H., Yao, S. H., Xiang, J. Q., Jin, Q. H. and Zhao, J. L. (2009). Nano-ELISA for highly sensitive protein detection. Biosensors and Bioelectronics 24, 2836-2841.         [ Links ]

Kierny, M. R., Cunningham, T. D. and Kay, B. K. (2012). Detection of biomarkers using recombinant antibodies coupled to nanostructured platforms. Nano Reviews 3.         [ Links ]

Kim, H. J., Ahn, K. C., Gonzalez-Techera, A., Gonzalez-Sapienza, G. G., Gee, S. J. and Hammock, B. D. (2009). Magnetic bead-based phage anti-immunocomplex assay (PHAIA) for the detection of the urinary biomarker 3-phenoxybenzoic acid to assess human exposure to pyrethroid insecticides. Analytical Biochemistry 386, 45-52.         [ Links ]

Kim, H. J., McCoy, M., Gee, S. J., Gonzalez-Sapienza, G. G. and Hammock, B. D. (2011). Noncompetitive phage anti-immunocomplex real-time polymerase chain reaction for sensitive detection of small molecules. Analytical Chemistry 83, 246-253.         [ Links ]

Kim, H. J., Rossotti, M. A., Ahn, K. C., Gonzalez-Sapienza, G. G., Gee, S. J., Musker, R. and Hammock, B. D. (2010). Development of a noncompetitive phage anti-immunocomplex assay for brominated diphenyl ether 47. Analytical Biochemistry 401, 38-46.         [ Links ]

Kozak, D., Anderson, W., Vogel, R. and Trau, M. (2011). Advances in Resistive Pulse Sensors: Devices bridging the void between molecular and microscopic detection. Nano Today 6, 531-545.         [ Links ]

Lee, J., Icoz, K., Roberts, A., Ellington, A. D. and Savran, C. A. (2010). Diffractometric detection of proteins using microbead-based rolling circle amplification. Analytical Chemistry 82, 197-202.         [ Links ]

Les, C. B. (2013). From bike reflector to virus detector. Photonics Spectra.         [ Links ]

Li, Y., Srinivasan, B., Jing, Y., Yao, X., Hugger, M. A., Wang, J. P. and Xing, C. (2010). Nanomagnetic competition assay for low-abundance protein biomarker quantification in unprocessed human sera. Journal of the American Chemical Society 132, 4388-4392.         [ Links ]

Majumdar, A. (2002). Bioassays based on molecular nanomechanics. Disease Markers 18, 167-174.         [ Links ]

Malou, N. and Raoult, D. (2011). Immuno-PCR: a promising ultrasensitive diagnostic method to detect antigens and antibodies. Trends in Microbiology 19, 295-302.         [ Links ]

Mani, V., Chikkaveeraiah, B. V. and Rusling, J. F. (2011). Magnetic particles in ultrasensitive biomarker protein measurements for cancer detection and monitoring. Expert Opinion on Medical Diagnostics 5, 381-391.         [ Links ]

Mason, J. T., Xu, L., Sheng, Z. M., He, J. and O'Leary, T. J. (2006). Liposome polymerase chain reaction assay for the sub-attomolar detection of cholera toxin and botulinum neurotoxin type A. Nature Protocols 1, 2003-2011.         [ Links ]

Mirkin, C. A., Letsinger, R. L., Mucic, R. C. and Storhoff, J. J. (1996). A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382, 607-609.         [ Links ]

Osterfeld, S. J., Yu, H., Gaster, R. S., Caramuta, S., Xu, L., Han, S. J., Hall, D. A., Wilson, R. J., Sun, S. H., White, R. L., Davis, R. W., Pourmand, N. and Wang, S. X. (2008). Multiplex protein assays based on real-time magnetic nanotag sensing. Proceedings of the National Academy of Sciences of the United States of America 105, 20637-20640.         [ Links ]

Park, J. S., Cho, M. K., Lee, E. J., Ahn, K. Y., Lee, K. E., Jung, J. H., Cho, Y., Han, S. S., Kim, Y. K. and Lee, J. (2009). A highly sensitive and selective diagnostic assay based on virus nanoparticles. Nature Nanotechnology 4, 259-264.         [ Links ]

Patolsky, F., Zheng, G. and Lieber, C. M. (2006). Nanowire sensors for medicine and the life sciences. Nanomedicine 1, 51-65.         [ Links ]

Platt, M., Willmott, G. R. and Lee, G. U. (2012). Resistive pulse sensing of analyte-induced multicomponent rod aggregation using tunable pores. Small 8, 2436-2444.         [ Links ]

Rissin, D. M., Kan, C. W., Campbell, T. G., Howes, S. C., Fournier, D. R., Song, L., Piech, T., Patel, P. P., Chang, L., Rivnak, A. J., Ferrell, E. P., Randall, J. D., Provuncher, G. Walt, D. R. and Duffy, D. C. (2010). Single-molecule enzymelinked immunosorbent assay detects serum proteins at subfemtomolar concentrations. Nature Biotechnology 28, 595-599.         [ Links ]

Roberts, G. S., Kozak, D., Anderson, W., Broom, M. F., Vogel, R. and Trau, M. (2010). Tunable nano/micropores for particle detection and discrimination: scanning ion occlusion spectroscopy. Small 6, 2653-2658.         [ Links ]

Rosi, N. L. and Mirkin, C. A. (2005). Nanostructures in biodiagnostics. Chemical Reviews 105, 1547-1562.         [ Links ]

Ruan, G. and Winter, J. (2012). Chemical Engineering at the Intersection of Nanotechnology and Biology. Chemical Engineering Progress, 41-51.         [ Links ]

Saha, K., Agasti, S. S., Kim, C., Li, X. and Rotello, V. M. (2012). Gold nanoparticles in chemical and biological sensing. Chemical Reviews 112, 2739-2779.         [ Links ]

Samir, T. M., Mansour, M. M., Kazmierczak, S. C. and Azzazy, H. M. (2012). Quantum dots: heralding a brighter future for clinical diagnostics. Nanomedicine 7, 1755-1769.         [ Links ]

Sano, T., Smith, C. L. and Cantor, C. R. (1992). Immuno-PCR: very sensitive antigen detection by means of specific antibody-DNA conjugates. Science 258, 120-122.         [ Links ]

Sherlock, T., Nasrullah, A., Litvinov, J., Cacao, E., Knoop, J., Kemper, S., Kourentzi, K., Kar, A., Ruchhoeft, P. and Willson, R. (2011). Suspended, micron-scale corner cube retroreflectors as ultra-bright optical labels. Journal of Vacuum Science & Technology B 29, V.         [ Links ]

Song, L., Hanlon, D. W., Chang, L., Provuncher, G. K., Kan, C. W., Campbell, T. G., Fournier, D. R., Ferrell, E. P., Rivnak, A. J., Pink, B. A., Minnehan, K. A., Patel, P. P., Wilson, D. H., Till, M. A., Faubion, W. A. and Duffy, D. C. (2011). Single molecule measurements of tumor necrosis factor alpha and interleukin-6 in the plasma of patients with Crohn's disease. Journal of Immunological Methods 372, 177-186.         [ Links ]

Soto, C. M., Blum, A. S., Vora, G. J., Lebedev, N., Meador, C. E., Won, A. P., Chatterji, A., Johnson, J. E. and Ratna, B. R. (2006). Fluorescent signal amplification of carbocyanine dyes using engineered viral nanoparticles. Journal of the American Chemical Society 128, 5184-5189.         [ Links ]

Soto, C. M. and Ratna, B. R. (2010). Virus hybrids as nanomaterials for biotechnology. Current Opinion in Biotechnology 21, 426-438.         [ Links ]

Srinivasan, B., Li, Y., Jing, Y., Xu, Y., Yao, X., Xing, C. and Wang, J. P. (2009). A detection system based on giant magnetoresistive sensors and high-moment magnetic nanoparticles demonstrates zeptomole sensitivity: potential for personalized medicine. Angewandte Chemie International Edition in English 48, 2764-2767.         [ Links ]

Tekin, H. C., Cornaglia, M. and Gijs, M. A. (2013). Attomolar protein detection using a magnetic bead surface coverage assay. Lab on a Chip 13, 1053-1059.         [ Links ]

van Reenen, A., de Jong, A. M. and Prins, M. W. (2013). Accelerated particle-based target capture–the roles of volume transport and nearsurface alignment. The Journal of Physical Chemistry B 117, 1210-1218.         [ Links ]

von Muhlen, M. G., Brault, N. D., Knudsen, S. M., Jiang, S. and Manalis, S. R. (2010). Labelfree biomarker sensing in undiluted serum with suspended microchannel resonators. Analytical Chemistry 82, 1905-1910.         [ Links ]

Walt, D. R. (2013). Optical methods for single molecule detection and analysis. Analytical Chemistry 85, 1258-1263.         [ Links ]

Weintraub, K. (2013). Biomedicine: The new gold standard. Nature 495, S14-16.         [ Links ]

Yu, X., Munge, B., Patel, V., Jensen, G., Bhirde, A., Gong, J. D., Kim, S. N., Gillespie, J., Gutkind, J. S., Papadimitrakopoulos, F. and Rusling, J. F. (2006). Carbon nanotube amplification strategies for highly sensitive immunodetection of cancer biomarkers. Journal of the American Chemical Society 128, 11199-11205.         [ Links ]

Zhang, H., Xu, Y., Huang, Q., Yi, C., Xiao, T. and Li, Q. (2013). Natural phage nanoparticle-mediated real-time immuno-PCR for ultrasensitive detection of protein marker. Chemical Communications 49, 3778-3780.         [ Links ]

Zheng, G., Patolsky, F., Cui, Y., Wang, W. U. and Lieber, C. M. (2005). Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nature Biotechnology 23, 1294-1301.         [ Links ]

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons