SciELO - Scientific Electronic Library Online

 
vol.12 número3El proceso de sedimentación como una aplicación sencilla para reducir contaminantes en efluentes textilesPredicción del perfil de dureza en probetas jominy de aceros de medio y bajo carbono índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Revista mexicana de ingeniería química

versão impressa ISSN 1665-2738

Rev. Mex. Ing. Quím vol.12 no.3 Ciudad de México Dez. 2013

 

Ingeniería de procesos

 

Preparation of activated carbons from banana leaves by chemical activation with phosphoric acid. Adsorption of methylene blue

 

Preparación de carbones activados a partir de hojas de platanera mediante activación química con ácido fosfórico. Adsorción de azul de metileno

 

M.A. Martín-González1, P. Susial1*, J. Pérez -Peña2 and J.M. Doña-Rodríguez2

 

1 Laboratorio de Tecnología Química General, Escuela de Ingenierías Industriales y Civiles, Universidad de Las Palmas de Gran Canaria, Campus de Tafira, 35017, Las Palmas de Gran Canaria, Spain. * Corresponding author. E-mail: psusial@dip.ulpgc.es Tel. 34-928-45-14-89, Fax 34-928-45-86-58.

2 Laboratorio de Fotocatálisis y Electroquímica, Parque Científico y Tecnológico, Universidad de Las Palmas de Gran Canaria, Campus de Tafira, 35017, Las Palmas de Gran Canaria, Spain.

 

Received April 13, 2012
Accepted May 22, 2013

 

Abstract

Banana leaves, which represent the second major residue generated in banana cultivations, were used as raw material for the preparation of six different activated carbons. The adsorbents were developed from this lignocellulosic precursor by means of chemical activation with phosphoric acid, modifying the concentration of the activating agent and the carbonization temperature during The production process. The obtained activated carbons presented slightly acid points of zero charge, high specific surface areas (798.51-1227.60 m2/g) and large total pore volumes (0.831.29 cm3/g), resulting mainly mesoporous. These adsorbents were employed for the adsorption of Methylene Blue in batch process. The dynamic experimental data were adjusted to pseudo-first and pseudo-second order kinetic models by non-linear regression, while the equilibrium experimental data were correlated to the Freundlich and Langmuir models. The monolayer adsorption capacities of this dye reached significant values, between 19.08 and 48.01 mg/g.

Keywords: activated carbon, banana leaf, methylene blue, phosphoric acid, adsorption isotherm.

 

Resumen

Las hojas de platanera, segundo residuo vegetal en orden de importancia del cultivo del plátano, se utilizaron como materia prima para la preparación de seis tipos de carbones activados diferentes. Los adsorbentes se fabricaron a partir de este precursor lignocelulósico mediante activación química con ácido fosfórico modificando durante el proceso de producción la concentración de activante y la temperatura de carbonización. Los diversos carbones activados obtenidos presentaron puntos de carga cero, ligeramente aícidos con considerables áreas superficiales específicas (798.51-1227.60 m2/g) y elevados volúmenes totales de poro (0.83-1.29 cm3/g) resultando predominantemente mesoporosos. Para determinar la capacidad adsorbente de estos tipos de carbones se realizaron pruebas batch utilizando Azul de Metileno. Los datos experimentales dinaímicos fueron sometidos a los modelos cinéticos de pseudo-primer y pseudo-segundo orden mediante regresión no lineal, mientras que los datos experimentales de equilibrio se correlacionaron a los modelos de Freundlich y de Langmuir. Las capacidades de adsorción monocapa de este colorante alcanzaron valores importantes que oscilaron entre 19.08 y 48.01 mg/g.

Palabras clave: carbón activado, hoja de platanera, azul de metileno, ácido fosfórico, isoterma de adsorción.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

References

Amin, N.K. (2008). Removal of reactive dye from aqueous solutions by adsorption onto activated carbons prepared from sugarcane bagasse pith. Desalination 223, 152-161.         [ Links ]

Alam, Md. Z., Muyibi, S.A., Mansor, M.F. and Wahid, R. (2007). Activated carbons derived from oil palm empty-fruit bunches: Application to environmental problems. Journal of Environmental Sciences 19, 103-108.         [ Links ]

Bulut, Y. and Aydin, H. (2006). A kinetics and thermodynamics study of methylene blue adsorption on wheat shells. Desalination 194, 259-267.         [ Links ]

Dastgheib, S.A. and Rockstraw, D.A. (2001). Pecan shell activated carbon: synthesis, characterization and application for the removal of copper from aqueous solution. Carbon 39, 1849-1855.         [ Links ]

Devi, R., Singh, V. and Kumar, A. (2008). COD and BOD reduction from coffee processing wastewater using Avocado peel carbon. Bioresource Technology 99, 1853-1860.         [ Links ]

El-Qada, E.N., Allen, S.J. and Walker, G.M. (2006). Adsorption of methylene blue onto activated carbon produced from steam activated bituminous coal: A study of equilibrium adsorption isotherm. Chemical Engineering Journal 124, 103-110.         [ Links ]

Fan, J., Zhang, J., Zhang, C., Ren, L. and Shi, Q. (2011). Adsorption of 2,4,6-trichlorophenol from aqueous solution onto activated carbon derived from loosestrife. Desalination 267, 139-146.         [ Links ]

Gholami, M., Nasseri, S., Alizadehfard, M.R. and Mesdaghinia, A. (2003). Textile dye removal by membrane technology and biological oxidation. Water Quality Research Journal of Canada 38, 379-391.         [ Links ]

Giraldo-Gutiérrez, L. and Moreno-Piraján, J.C. (2008). Pb (II) and Cr (IV) adsorption from aqueous solution on activated carbons obtained from sugar cane husk and sawdust. Journal of Analytical and Applied Pyrolysis 81, 278-284.         [ Links ]

Girgis, B.S. and Ishak, M.F. (1999). Activated carbon from cotton stalks by impregnation with phosphoric acid. Materials Letters 39, 107-114.         [ Links ]

Hameed, B.H., Din, A.T.M. and Ahmad, A.L. (2007). Adsorption of methylene blue onto bamboo-based activated carbon: Kinetics and equilibrium studies. Journal of Hazardous Materials 141, 819-825.         [ Links ]

Hu, Z. and Srinivasan, M.P. (2001). Mesoporous high-surface-area activated carbon. Microporous and Mesoporous Materials 43, 267-275.         [ Links ]

Karagöz, S., Tay, T., Ucar, S. and Erdem, M. (2008). Activated carbons from waste biomass by sulfuric acid activation and their use on methylene blue adsorption. Bioresource Technology 99, 6214-6222.         [ Links ]

Khalili, N.R., Campbell, M., Sandi, G. and Golás, J. (2000). Production of micro-and mesoporous activated carbon from paper mill sludge: I. Effect of zinc chloride activation. Carbon 38, 1905-1915.         [ Links ]

Kriia, A., Hamdi, N. and Srasra, E. (2010). Removal of Cu (II) from water pollutant with Tunisian activated lignin prepared by phosphoric acid activation. Desalination 250, 179-187.         [ Links ]

Kumar, K.V. (2006). Linear and non-linear regression analysis for the sorption kinetics of methylene blue onto activated carbon. Journal of Hazardous Materials 137, 1538-1544.         [ Links ]

Li, K. and Wang, X. (2009). Adsorptive removal of Pb (II) by activated carbon prepared from Spartina alterniflora: Equilibrium, kinetics and thermodynamics. Bioresource Technology 100, 2810-2815.         [ Links ]

Lim, W.C., Srinivasakannan, C. and Balasubramaniean, N. (2010). Activation of palm shells by acid impregnation for high yielding activated carbon. Journal of Analytical and Applied Pyrolysis 88, 181-186.         [ Links ]

Macedo, J.S., Da Costa Júnior, N.B., Almeida, L.E., Vieira, E.F.S., Cestari, A.R., Gimenez, I.F., Villareal Carreño, N.L. and Barreto, L.S. (2006). Kinetic and calorimetric study of the adsorption of dyes on mesoporous activated carbon prepared from coconut coir dust. Journal of Colloid and Interface Science 298, 515-522.         [ Links ]

Mohanty, K., Das, D. and Biswas, M.N. (2006). Preparation and characterization of activated carbons from Sterculia alata nutshell by chemical activation with zinc chloride to remove phenol from wastewater. Adsorption 12, 119-132.         [ Links ]

Nunes, A.A., Franca, A.S. and Oliveira, L.S. (2009). Activated carbons from waste biomass: An alternative use for biodiesel production solid residues. Bioresource Technology 100, 1786-1792.         [ Links ]

Oliveira, L., Cordeiro, N., Evtuguin, D.V., Torres, I.C. and Silvestre, A.J.D. (2007). Chemical composition of different morphological parts from "Dwarf Cavendish" banana plant and their potential as a non-wood renewable source of natural products. Industrial Crops and Products 26, 163-172.         [ Links ]

Prahas, D., Kartika, Y., Indraswati, N. and Ismadji, N. (2008). Activated carbon from jackfruit peel waste by H3PO4 chemical activation: Pore structure and surface chemistry characterization. Chemical Engineering Journal 140, 32-42.         [ Links ]

Reffas, A., Bernardet, V., David, B., Reinert, L., Lehocine, M.B., Dubois, M., Batisse, N. and Duclaux, L. (2010). Carbons prepared from coffee grounds by H3PO4 activation: Characterization and adsorption of methylene blue and Nylosan Red N-2RBL. Journal of Hazardous Materials 175, 779-788.         [ Links ]

Salleh, M.A.M., Mahmoud, D.K., Karim, W.A.W.A. and Idris, A. (2011). Cationic and anionic dye adsorption by agricultural solid wastes: A comprehensive review. Desalination 280, 1-13.         [ Links ]

Salman, J.M. and Hameed, B.H. (2010). Removal on insecticide carbofuran from aqueous solutions by banana stalks activated carbon. Journal of Hazardous Materials 176, 814-819.         [ Links ]

Salman, J.M., Njoku, V.O. and Hameed, B.H. (2011). Adsorption of pesticides from aqueous solution onto banana stalk activated carbon. Chemical Engineering Journal 174, 41-48.         [ Links ]

Sathiskumar, M., Vijaraghavan, K., Binupriya, A.R., Stephan, A.M., Choi, J.G. and Yun, S.E. (2008). Porogen effect on characteristics of banana pith carbon and the sorption of dichlorophenols. Journal ofColloid and Interface Science 320, 22-29.         [ Links ]

Shaarani, F.W. and Hameed, B.H. (2010). Batch adsorption of 2,4-dichlorophenol onto activated carbon derived from agricultural waste. Desalination 255, 159-164.         [ Links ]

Song, J., Zou, W., Bian, Y., Su, F. and Han, R. (2011). Adsorption characteristics of methylene blue by peanut husk in batch and column modes. Desalination 265, 119-125.         [ Links ]

Wang, S., Zhu, Z.H., Coomes, A., Haghseresht, F. and Lu, G.Q. (2005). The physical and surface chemical characteristics of activated carbons and the adsorption of methylene blue from wastewater. Journal of Colloid and Interface Science 284, 440-446.         [ Links ]

Wang, X., Liang, X., Wang, Y., Liu, M., Yin, D., Xia, S., Zhao, J. and Zhang, Y. (2011). Adsorption of Copper (II) onto activated carbons from sewage sludge by microwave-induced phosphoric acid and zinc chloride activation. Desalination 278, 231-237.         [ Links ]

Yavuz, R., Akyildiz, H., Karatepe, N. and CCetinkaya, E. (2010). Influence of preparation conditions on porous structures of olive stone activated by H3PO4. Fuel Processing Technology 91, 80-87.         [ Links ]

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons