SciELO - Scientific Electronic Library Online

 
vol.12 número3Co-tratamiento anaerobio de lixiviados producidos en una planta de composteo de desechos sólidos urbanos biodegradables en la Ciudad de MéxicoUn modelo dinámico para el derrame y evaporación de líquidos volátiles aplicable al análisis de riesgo de tipo industrial índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de ingeniería química

versión impresa ISSN 1665-2738

Rev. Mex. Ing. Quím vol.12 no.3 Ciudad de México dic. 2013

 

Ingeniería ambiental

 

Tropical bacteria isolated from oil-contaminated mangrove soil: bioremediation by natural attenuation and bioaugmentation

 

Aislamiento de bacterias tropicales en suelo de mangle contaminado por hidrocarburos: biorremediación por atenuación natural y bioaumentación

 

A. Ruiz-Marín*, J.C. Zavala-Loria, Y. Canedo-López and A.V. Cordova-Quiroz

 

Universida Autónoma de Ciudad del Carmen. Calle 56 #4. Av. Concordia. Ciudad del Carmen, Campeche, México, CP 24180. * Corresponding author. E-mail: aruiz@pampano.unacar.mx Tel: +52-938-38-11018 Ext. 2103.

 

Received March 14, 2013
Accepted June 4, 2013

 

Abstract

The biodegradation of DRO compounds was evaluated by the processes of natural attenuation and bioaugmentation in mangrove soil. Prior to the experimente, a consortium of bacteria capable of degrading hydrocarbons was isolated and identified: Pseudomonas aeruginosa, P. luteola, Sphingomonas paucimobiiis and P. fluorescens. For natural attenuation, mangrove oil contaminated soil was placed in horizontal tubular reactors with air supply and no addition of bacteria. While for bioaugmentation three initial inocula from bacterial consortium (0,02, 0.04 and 0.06 g L-1 biomass dry weight) were added to the mangrove soil, maintaining aeration and moisture (30-). The samples were collected every 30 days during 3 months and the oil content was analyzed with a gas chromatograph (GC). The degradation of diesel oil range (40.3%) was higher with an inocula size of 0.06 g L-1, where C12, C18 and C26 were the most susceptible to degradation, while in trie process of natural attenuation only 4.51% was removed, suggesting that the low nutrient content in the mangrove soil and bacteria number could limit; the hydrocarbon degradation. Therefore it is possible to increase the degradation through bioaugmentation in a system as the mangrove soil.

Keywords: bioremediation, bioaugmentation, natural attenuation, mangrove soil, bacterial consortium.

 

Resumen

La biodegradación de DRO componentes fue evaluada por procesos de atenuación natural y bioaumentación en suelo de mangle. Previo a los experimentos se realizó el aislamiento e identificación de un consorcio de bacterias capaces de degradar hidrocarburos: Pseudomonas aeruginosa, P. luteola, Sphingomonas paucimobilis y P. fluorescens. Para atenuación natural, el suelo de mangle contaminado con hidrocarburo fue colocado en reactores tubulares horizontales con suministro de aire y sin adición de bacterias. Para bioaumentación tres tamaños de inoculo inicial del consorcio de bacterias (0.02, 0.04 y 0.06 g L-1 biomasa peso seco) fueron adicionados al suelo de mangle contaminado, manteniendo la aireación y humedad (30%). Se colectaron muestras cada 30 días durante 3 meses y se analizaron por cromatografía de gases. La degradación en rango diesel (40.3%) fue mayor con un tamaño de inoculo de 0.06 g L-1, donde los hidrocarburos C12, C18 y C26 fueron mas susceptibles. En el proceso de atenuación únicamente el 4.51% fue removido, sugiriendo que el bajo contenido de nutrientes y número de bacterias en suelo de mangle podría causar una limitación en la biodegradación de hidrocarburo. Por lo tanto, es posible incrementar esta degradación a través de la bioaumentación en suelo de mangle.

Palabras clave: biorremeadiación, bioaumentación, atenuación natural, suelo de mangle, consorcio bacterial.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

References

APHA-AWWA-WPCF. (1995). Standard methods forthe examination of water and wastewater. 19th Edn, 1105.         [ Links ]

Aike, C.D.S., de Oliveira, F.J.S., Bernardes, D. S. and de Franca, F.P. (2009). Bioremediation of marine sediments impacted by petroleum. Applied Biochemical Biotechnology 153, 58-66.         [ Links ]

Atlas, M.R. (1997). Bioestimulación para mejorar la biorrecuperación microbiana. En: Morris A. Levin y Michael A. Gealt. Biotratamiento de residuos tóxicos y peligrosos, selección, estimación, modificación de microorganismos y aplicaciones. Edit. McGraw - Hill. México. Pp. 21-40.         [ Links ]

Balagurusamy, L. (2005). Anaerobic bioremediation-an untapped potential. Revista Mexicana de Ingeniería Química 4, 273-287.         [ Links ]

Baird, W.E., Panda, J., and Lang, W. J. (2002). Success story. Pollution Engineering 34, 18-19.         [ Links ]

Bento F.M., Camargo, F.A.O., Okeke, B.C., and Frankenberger, W.T. (2005). Comparative bioremediation of soils contaminated with diesel oil by natural attenuation, bioestimulation and bioaugmentation. Bioresources Technology 96, 1049-1055.         [ Links ]

Catherine, N.M and Raymond N.Y. (2004). Natural attenuation of contaminated soils. Environment International 30, 587-601.         [ Links ]

De la Lanza-Espino, G. and Lozano-Montes, H. (1999). Comparación fisicoquímica de las lagunas de Alvarado y Términos. Hidrobiológica 9,15-30.         [ Links ]

De la Lanza-Espino, G. and Rodríguez-Medina, M.A. (1990). Caracterización de la Laguna de Caimanero, Sinaloa, México, a través de algunas variables geoquímicas. Ciencias Marinas 16, 27- 44.         [ Links ]

Dittmar, T. and Lara, R.J. (2001). Do mangroves rather than rivers provide nutrients to coastal environments south of the Amazon Rivers? Evidence from long-term flux measurements. Marine Ecology Progress Series 213, 67-77.         [ Links ]

Dua, M., Singh A., Sethunathan, N., and Johri, A.K. (2002). Biotechnology and bioremediation: successes and limitations. Applied Microbiology and Biotechnology 59, 143-152.         [ Links ]

Heiri, O., Lotter, A.F. and Lemcke, G. (2001). Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. Journal of Paleolimnology 25, 101-110.         [ Links ]

Holguin, G.V.P. and Bashan, Y. (2001). The role of sediment microorganisms in the productivity, conservation, and rehabilitation of the mangrove ecosystems: an overview. Biology and Fertility of soils 33, 265-278.         [ Links ]

Janssen, H.S. and Andersen, F.Ø. (1992). Importance of temperature, nitrate, and pH for phosphate release from anaerobic sediments of 4 shallow, eutrophic lakes. Limnology and Oceanography 37, 577-589.         [ Links ]

Marquez-Rocha, F.J., Hernández-Rodríguez, V., and Lamela, M.T. (2001). Biodegradation of diesel oil and soil by a microbial consortium. Water Air and Soil Pollution 128, 313-320.         [ Links ]

Medina-Moreno, S.A., Huerta-Ochoa, S., Lucho-Constantino, C.A., Aguilera-Vázquez, L., Jiménez-González, A., and Gutiérrez-Rojas, M. (2009). Biodegradation modeling of sludge bioreactors of total petroleum hydrocarbons weathering in soil and sediment. Revista Mexicana de Ingeniería Química 8, 245-258.         [ Links ]

Merino, F. (1998). Estudio de microorganismos nativos productores de emulsificantes de petróleo. Tesis maestría: Universidad Nacional La Molina. Lima, Perú. p 98.         [ Links ]

Mishra, S., Jyot, J., Kuhad, R.C., and Lal, B. (2001). Evaluation of inoculum addition to stimulate in situ bioremediation of oily sludge contaminated soil. Applied and Environmental Microbiology 67, 1675-1681.         [ Links ]

Nwachukwu, S.C.U., James, P., and Gurney, T.R. (2001). Inorganic nutrient utilization by "adapted" Pseudomonas putida strain used in the bioremediation of agricultural soil polluted with crude petroleum. Journal of Environmental Biology 22, 153- 162.         [ Links ]

Rivera-Monroy, V.H, Madden, C. J., Day, J.W., Twilley, R.R., Vera-Herrera, F., and Alvarez-Guillén, H. (1988). Seasonal coupling of a tropical mangrove forest and an estuarine water column: enhancement of aquatic primary productivity. Hydrobiología 379, 41-53.         [ Links ]

Röling, W.F.M. and Verseveld, H.W.V. (2002). Natural attenuation: What does the subsurface have store? Biodegradation 13, 53-64.         [ Links ]

Shin, W.S., Pardue, J.H., Jackson, W.A., and Choi, S.J. (2001). Nutrient enhanced biodegradation of crude oil in tropical salt marshes. Water, Air, and Soil Pollution 131, 135-152.         [ Links ]

Santos, H.F., Carmo, F.L., Paes, J.E.S., Rosado, A. S. and Peixoto, R.S. (2010). Bioremediation of mangroves impacted by petroleum. Water, Air, Soil Pollution. DOI: 10-1007/s11270-010-0536-4.         [ Links ]

Twilley, R.R. (1988). Coupling of mangroves to the productivity of estuarine and coastal water. In. B. O. Janson (ed.), Coastal-Offshore Ecosystem Interactions. Springer Verlag, Berlin, Germany, Pp. 155-180.         [ Links ]

Xu, R. and Obbard, J. (2003). Effect of nutrient amendments on indigenous hydrocarbon biodegradation in oil-contaminated beach sediments. Journal Environmental Quality 32,1234-1243.         [ Links ]

Yañez-Arancibia, A. and Day, J.W. (1988). Ecological characterization of the Terminos Lagoon. In: A. Yafiez Arancibia and J.W. Day. (Eds). Ecología de los ecosistemas costeros en el sur del Golfo de México: La región de la Laguna de Términos. Pp.1-27. Universidad Nacional Autónoma de México. Organización de Estados Americanos. México.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons