SciELO - Scientific Electronic Library Online

 
vol.12 número2Electrodepósito de aleaciones cobalto-indio a partir de electrolitos de citrato y formación de patrones espacio-temporalesAnálisis de costos de operación exergoeconómicos a un ciclo teórico de refrigeración por compresión de vapor usando HFC-134a índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de ingeniería química

versión impresa ISSN 1665-2738

Rev. Mex. Ing. Quím vol.12 no.2 Ciudad de México ago. 2013

 

Simulación y control

 

Stabilization of third-order systems with possible complex conjugate poles and time delay

 

Estabilización de sistemas de tercer orden con posibles polos complejos conjugados y tiempo de retardo

 

M.A. Hernández-Pérez, B. del Muro-Cuéllar1*, D. Cortés-Rodríguez and I. Araujo-Vargas

 

Escuela Superior de Ingeniería Mecánica y Eléctrica, Unidad Culhuacan, Instituto Politécnico Nacional, México D.F., 04430, México. *Corresponding author. E-mail: bdelmuro@ipn.mx Tel. (52)56-562058.

 

Received July 8, 2012
Accepted April 8, 2013

 

Abstract

The stabilization problem of third-order, time-delay unstable linear systems is analyzed. The systems under consideration have one unstable and two stable poles, which may be complex conjugate. Necessary and sufficient conditions to guarantee the stability of the closed loop system by means of a static output feedback are provided. Using such conditions, a predictor scheme that improves the transient system performance is proposed. To illustrate the application of the proposed strategy, it is applied to an unstable continuously stirred tank reactor model. Simulation results are presented.

Keywords: delay, complex conjugate poles, predictor, stabilization.

 

Resumen

Este trabajo considera el problema de la estabilización de sistemas lineales con tiempo de retardo de tercer orden, con un polo inestable y dos estables, los cuales pueden ser complejos conjugados. Se presentan las condiciones necesarias y suficientes para asegurar la estabilidad del sistema en lazo cerrado por medio de una retroalimentación estática de la salida. Asimismo, usando el resultado anterior se propone un esquema predictor el cual mejora el desempeño transitorio del sistema. Finalmente, el desempeño de la estrategia de control propuesta es evaluado mediante su aplicación en simulación numérica a un reactor de tanque continuamente agitado inestable.

Palabras clave: retardo, polos complejos conjugados, predictor y estabilización.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

References

Bequette, B.W. (2003). Process Control: Modeling, Design and Simulation. Prentice Hall.         [ Links ]

del Muro, B., González, O. A., & Pedraza, Y. A. (2009). Stabilization of High Order Systems with Delay using a Predictor Schema. Augost 2-5. Cancun Mexico. IEEE 52nd International Midwest Symposium on Circuits and Systems.         [ Links ]

Fridman E. and Shaked U. (2002). An improved stabilization method for linear time-delay systems. Automatic Control 47, 1931 - 1937.         [ Links ]

Kawnish K. and Shoukat Choudhury M.A.A. (2012). A novel dead time compensator for stable processes with long dead times. Journal of Process Control 22, 612-625.         [ Links ]

Kolmanovskii V.B. and Richard J. P. (1999). Stability of some linear systems with delays. IEEE Transactions on Automatic Control 44, 984-989.         [ Links ]

Lee S. C., Qing-Guo W. and Xiang C. (2010). Stabilization of all-pole unstable delay processes by simple controllers. Journal of Process Control 20, 235-239.         [ Links ]

Lee Y. S., Moon Y. S., Kwon W. H., and Park P. G. (2004). Delay Dependent Robust H Control for Uncertain Systems with a State-Delay. Automatica 40, 65-72.         [ Links ]

Liu T., Zhang W. and Gu D. (2005). Analytical design of two-degree-of-freedom control scheme for open-loop unstable processes. Journal of Process Control 15, 559-572.         [ Links ]

Lu X., Yong-Sheng Y., Quing-Guo W. and Wei-Xing Z. (2005). A double two-degree-of-freedom control scheme for improved control of unstable delay processes. Journal of Process Control 15, 605-614.         [ Links ]

Mahmoud M.S. and Al-Rayyah A.Y. (2009). Efficient parameterization to stability and feedback synthesis of linear time-delay systems. Control Theory Applications 3, 1107-1118.         [ Links ]

Marquez, J., del Muro, B., Velasco, M., and Alvarez, J. (2010). Control based in an observer scheme for first-order systems with delay. Revista Mexicana de Ingeniería Química 9,43-52.         [ Links ]

Michiels W., Engelborghs K., Vansevenant P. and Roose D. (2002). Continuous pole placement for delay equations. Automatica 38, 747-761.         [ Links ]

Munz, U., Ebenbauer C, Haag T., and Allgower F. (2009). Stability analysis of time-delay systems with incommensurate delays using positive polynomials. IEEE Transactions on Automatic Control 54, 1019-1024.         [ Links ]

Nesimioglu, B. S. and Soylemez M. T. (2010). A simple derivation of all stabilizing proportional controllers for first order time-delay systems. Asian Journal of Control 14, 598-604.         [ Links ]

Niculescu S. I. (2001). Delay Effects on Stability. A Robust Control Approach. Springer-Verlag, London.         [ Links ]

Normey-Rico J. E. and Camacho E. F. (2008). Simple robust dead-time compensator for first order plus dead-time unstable processes. Industrial and Engineering Chemistry Research 47, 4784-4790.         [ Links ]

Normey-Rico J. E. and Camacho E. F. (2009). Unified approach for robust dead-time compensator design. Journal of Process Control 19, 38-47.         [ Links ]

Qing-Chang Z. (2006). Robust Control of Time-Delay Systems, Springer.         [ Links ]

Rao, A.S. and Chidambaram M. (2006). Enhanced two-degrees-of-freedom control strategy for second-order unstable processes with time delay. Industrial and Engineering Chemistry Research 45, 3604-3614.         [ Links ]

Richard J. P. (2003). Time-Delay Systems: An Overview of Some Recent Advances and Open Problems. Automatica 39, 1667-1694.         [ Links ]

Seshagiri A., Rao V. S. R. and Chidambaram M. (2007). Simple analytical design of modified smith predictor with improved performance for unstable first-order plus time delay processes. Industrial and Engineering Chemistry Research 46, 4561-4571.         [ Links ]

Silva, G. J. and Bhattacharyya S. P. (2005). PID Controllers for Time-Delay Systems, Birkhuser, Boston, MA.         [ Links ]

Smith O.J.M. (1957). Closed control of loops with dead time. Chemical Engineering Progress 53, 217-219.         [ Links ]

Walton, K. and Marshall J. E. (1987). Direct method for TDS stability analysis. IEE Proceedings on Control Theory Applications 134, 101-107.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons