SciELO - Scientific Electronic Library Online

 
vol.12 número2Estimación del coeficiente de transferencia de calor global a bajas presiones en un condensador helicoidal integrado a un transformador térmicoDetección de fallas en un intercambiador de calor, utilizando observadores por modos deslizantes de segundo orden índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Revista mexicana de ingeniería química

versão impressa ISSN 1665-2738

Rev. Mex. Ing. Quím vol.12 no.2 Ciudad de México Ago. 2013

 

Ingeniería de procesos

 

Coffee grain rotary drying optimization

 

Optimización del secado de granos de café en un secador rotatorio

 

W.N. Hernández-Díaz1*, F.J. Hernández-Campos1, Z. Vargas-Galarza1, G.C. Rodríguez-Jimenes2 and M.A. García-Alvarado2

 

1 Depto. Ingeniería Química y Bioquímica y Depto. De Posgrado e Investigación del Instituto Tecnológico de Zacatepec. Calzada Tecnológico 27, Col. Centro, Zacatepec, Morelos, 62780, México. *Corresponding author. E-mail: wendynetz@yahoo.com.mx

2 Unidad de Investigación y Desarrollo en Alimentos del Instituto Tecnológico de Veracruz, M.A. de Quevedo.2779, Veracruz, Veracruz, 91987, México.

 

Received September 26, 2012
Accepted March 18, 2013

 

Abstract

The objective of the present work was to determine the coffee bean Guardiola dryer operating conditions that minimized the energy consumption (Q) and maximized the process thermal efficiency. A mechanistic coffee bean drying model was solved for a complete mixed assumption to simulate the drying. The simulated results reproduced the experimental results obtained with a 7.60 m3 Guardiola dryer loaded with 2675 kg of wet green coffee grains. The thermal second law efficiency of the drying was calculated with an expression that takes into account the exergy air carries before entering the dryer. For the same coffee load, and with restrictions on grain's temperature (Tβ < 45°C), final water content (Xβ < 11%) and water activity (aw < 0.80), the drying was simulated for several air fluxes and temperatures to find the optimum drying conditions (Tγ = 80°C and Gγ =6560 kg air.h-1). A 15.80% reduction in energy consumption was achieved when optimization results were compared with the normal operation conditions.

Keywords: optimization, thermal efficiency, drying, exergy, coffee.

 

Resumen

El objetivo del presente trabajo es determinar las condiciones de operación de un secador de café tipo Guardiola que minimicen el consumo de energía (Q) y maximicen la eficiencia térmica del proceso. Para simular el secado se utilizó un modelo mecanístico para secado de café, resolviéndolo de acuerdo a la suposición de mezclado completo. Los resultados de la simulación reprodujeron la conducta experimental obtenida de un secador tipo Guardiola de 7.60 m3 cargado con 2675 kg de granos de café verde húmedo. Se calculó la eficiencia térmica de segunda Ley del secado con una expresión que toma en cuenta la exergía que el aire posee antes de entrar al secador. Para encontrar las condiciones óptimas de secado, para la misma carga de café y con restricciones de temperatura (Tβ < 45°C), humedad final (Xβ< 11%) y actividad de agua del grano (aw < 0.80), se simuló el secado para diferentes flujos y temperaturas de aire. Al comparar las condiciones óptimas encontradas (Tγ = 80°C and Gγ = 6560 kg aire.h-1) con las normalmente utilizadas en el beneficio se logró una reducción del 15.80% en el consumo de energía.

Palabras clave: optimización, eficiencia térmica, secado, exergía, café.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Referencias

Akpinar, E.K, Midilli, A. and Bicer, Y. (2005). Energy and exergy of potato drying process via cyclone type drier. Energy Conversion and Management 46, 2530-2552.         [ Links ]

Akpinar, E.K, Midilli, A. and Bicer, Y. (2006). The first and second law analyses of thermodynamic of pumpkin drying process. Journal of Food Engineering 72, 320-331.         [ Links ]

AOAC, (1990). Official Methods of Analysis (Method No. 22.013). Washington, DC: Association of Official Analytical Chemist.         [ Links ]

Barrozo, M.A.S., Murata, V.V. and Costa, S.M. (1998). The drying of soybean seed in countercurrent and concurrent moving bed dryers. Drying Technology 16, 2033-2047.         [ Links ]

Bruce, D.M. and Giner, S.A. (1993). Mathematical modeling of grain drying in counter-flow beds: Investigation of cross-over of air and grain temperatures. Journal of Agricultural Engineering and Research 55, 143-161.         [ Links ]

Bucheli P., Kanchanomai C., Meyer I. and Pittet A. (2000). Development of ochratoxin a during robusta (Coffea canephora) coffee cherry drying. Journal of Food Chemistry 48, 1358-1362.         [ Links ]

Geankoplis C.J. (1982). Procesos de Transporte y Operaciones Unitarias. Compañía Editorial Continental, S.A. de C.V., 3ra Edición, México, D.F.         [ Links ]

Giner S.A., Mascheroni, R.H. and Nellist, M.E. (1996). Cross-flow drying of wheat. A simulation program with a diffusion-based deep-bed model and a kinetic equation for viability loss estimations. Drying Technology 14, 1625-1671.         [ Links ]

González-Rentería S.M., Soto-Cruz N.O., Rutiaga-Quiñones O.M., Medrano-Roldán H., Rutiaga-Quiñones J.G. and López-Miranda J. (2011). Optimización del proceso de hidrólisis enzimática de una mezcla de pajas de frijol de cuatro variedades (Pinto villa, Pinto saltillo, Pinto mestizo y Flor de mayo). Revista Mexicana de Ingeniería Química 10, 17-28.         [ Links ]

Guerrero S., Alzamora S.M. and Grxchenson L.N. (1996) Optimization of a combined factors technology for preserving banana pure to minimize color changes using the response surface methodology. Journal of Food Engineering 28, 307-322.         [ Links ]

Hernández-Díaz W.N., Ruíz-López I.I., Salgado Cervantes M.A., Rodríguez Jimenes G. del C. and García Alvarado M.A. (2008). Modeling heat and mass transfer during drying of green coffee beans using prolate spheroidal geometry. Journal of Food Engineering 86, 1-9.         [ Links ]

Kavak E., Midilli A. and Biecer Y. (2005). Energy and exergy of potato drying process via cyclone type dryer. Energy Conversion and Management 46, 2530-2552        [ Links ]

Kiranoudis, C.T. (1998). Design of batch grape dryers. Drying Technology 16, 141-162.         [ Links ]

Luna-Solano, G., Salgado-Cervantes, M.A., Rodríguez-Jimenes, G.C. and García-Alvarado, M.A. (2005). Optimization of brewer's yeast (Saccharomyces ssp.) spray drying process. Journal of Food Engineering 68, 9-18.         [ Links ]

Madamba, P.S. and Liboon F.A. (2001). Optimization of the vacuum dehydration of celery (Apium graveolens) using the response surface methodology. Drying Technology 19, 611-626.         [ Links ]

Madamba, P.S. and Lopez R.I., (2002). Optimization of the osmotic dehydration of mango (Mangifera indica L.) slices. Drying Technology 20, 1227-1242.         [ Links ]

Maroulis, Z.B., Kiranoudis, C.T., and Marinos-Kouris, D. (1995). Heat and mass transfer modeling in air drying of foods. Journal of Food Engineering 26, 113-130.         [ Links ]

Paulino de Morales M.E. and Luchese R.H. (2003). Ochratoxin A in green coffee: influence of harvest and drying processing procedures. Journal of Agricultural Food Chemistry 51, 5824-5828.         [ Links ]

Pérez-Alegría L.R., Ciro H.J. and Abud L.C. (2001). Physical and thermal properties of parchment coffee bean. American Society of Agricultural Engineers 44, 1721-1726.         [ Links ]

Prommas R., Keangin P. and Rattanadecho P. (2010). Energy and exergy analyses in convective drying process of multi-layered porous packed bed. International Communications in heat and mass Transfer 37, 1106-1114.         [ Links ]

Ramírez, A., Tejero-Andrade, J.M., Salgado-Cervantes, M.A., Rodríguez-Jimenes, G.C. and García-Alvarado, M.A. (2008). Second law thermal efficiency of convective driers. Proceedings of the 16th International drying Symposium. Hyderabd India. Paper No. 262.         [ Links ]

Ratti, C. and Mujumdar, A.S. (1995). Simulation of packed bed drying of foodstuffs with airflow reversal. Journal of Food Engineering 26, 259-271.         [ Links ]

Sin, H. N., Yusof, S., Hamid, N. and Rahman, R. A. (2006). Optimization of enzymatic clarification of sapodilla juice using response surface methodology. Journal of Food Engineering 73, 313-319.         [ Links ]

Sfredo M.A., Finzer J.R.D. and Limaverde J.R. (2002).Study of the drying process of arabica coffee cherries using vibrated trays driers in the fine drink attainment. Proceedings of the 13th international drying Symposium (IDS 2002), Beijing China. B, 1342-1351.         [ Links ]

Sfredo M.A., Finzer J.R.D. and Limaverde J.R. (2005). Heat and mass transfer in coffee fruits drying. Journal of Food Engineering 70, 15-25.         [ Links ]

Spencer, H.B. (1969). A mathematical simulation of grain drying. Journal of Agricultural Engineering Research 14, 226-235.         [ Links ]

Suárez-Quiroz M., González-Rios, Barel M., Guyot B., Schorr-Galindo S. and Guiraud J. P. (2004). Effect of chemical and environmental factors on Aspergillus ochraceus growth and toxigenesis in green coffee. Food Microbiology 21, 629-634.         [ Links ]

Téllez-Mora P., Peraza-Luna F.A., Feria-Velasco A. and Andrade-González I. (2012). Optimización del proceso de fermentación para la producción de tequila, utilizando la metodología de superficie de respuesta (MSR). Revista Mexicana de Ingeniería Química 11, 163-176.         [ Links ]

Torrez, N. Gustafsson, M., Schreil, A. and Martinez, J. (1998). Modeling and simulation of cross-flow moving bed grain dryers. Drying Technology. 16, 1999-2015.         [ Links ]

Varadharaju N., Karunanidhi C. and Kailappan R. (2001). Coffee cherry drying: a two layer model. Drying Technology 19, 709-715.         [ Links ]

Villalpando-Guzman J., Herrera-López E.J., Amaya-Delgado L., Godoy-Zaragoza M.A., Mateos-Díaz J.C., Rodríguez-González J. and Jaubert-Garibay S. (2011). Efecto del secado complementario con microondas sobre tres formas de rebanadas de mango. Revista Mexicana de Ingeniería Química 10, 281-290.         [ Links ]

Wang, Z.H. and Chen, G. (2000). Heat and mass transfer in batch fluidized-bed drying of porous particles. Chemical Engineering Science 55, 1857-1869.         [ Links ]

Zvolinschi, A., Johannessen, E. and Kjelstrup, S. (2006) . The second-law optimal operation of a paper drying machine. Chemical Engineering Science 61, 3653-3662.         [ Links ]

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons