SciELO - Scientific Electronic Library Online

 
vol.12 número1El efecto de las condiciones de funcionamiento durante el cultivo sobre el comportamiento electroquímico y la morfología de los recubrimientos de cromo trivalentes derivados de soluciónUna propuesta simple para modelar cinéticas de curado isotérmicas índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Revista mexicana de ingeniería química

versão impressa ISSN 1665-2738

Rev. Mex. Ing. Quím vol.12 no.1 Ciudad de México Abr. 2013

 

Polímeros

 

Weathering and biodegradation of polylactic acid composite reinforced with cellulosewhiskers

 

El intemperismo y la biodegradación de material compuesto de ácido poliláctico reforzado con whiskers de celulosa

 

G.I. Bolio-López1*, L. Veleva2, A. Valadez-González3 and P. Quintana-Owen3

 

1 Universidad Popular de la Chontalpa, Carr. Cárdenas-Hguillo. Km.2.5, Cárdenas, Tab. * Corresponding author. E-mail: ivettebl@cicy.mx

2 CINVESTAV-Mérida, Applied Physics, Ant. Carret. a Progreso, Km.6, Cordemex, 97310 Mérida, Yuc.

3 CICY Unit Materials, St. 43 No. 130. Chuburná de Hidalgo, 97200 Mérida, Yuc.

 

Received 9 of October 2012
Accepted 28 of November 2012

 

Abstract

This work focuses on analysis and comparison of accelerated weathering of samples of polylactic acid reinforced with cellulose whiskers (PLA-CW), conducted in QUV chamber-Panel, and their subsequent exposure to biotic soil environment. The cellulose whiskers (microfibrils) were obtained from banana rachis and pseudostem Musa cavendish. Changes in thermal, structural and mechanical properties, due to degradation processes of PLA-CW, were studied using DSC, IR Spectroscopy, XRD, NMR, GPC and Mechanical test. The results show that the percentage of biodegradability in soil, based on CO2 release, is higher for samples of PLA-CW that have been previously exposed to UV-photodegradation, which induces hydrolysis that stimulates the biodegradability of PLA-CW. The results indicate that PLA-CW has short half-life after biodegradation in soil and it is suitable for land disposal.

Keywords: weathering, biodegradation, cellulose whiskers, poly (L-lactic) acid biocomposite.

 

Resumen

En este estudio se investigó la biodegradación en suelo del material compuesto de ácido poliláctico reforzado con whiskers (microfibrillas) de celulosa (PLA-CW), obtenidas de raquis y pseudotallo de Musa cavendish previamente expuesto y no a los efectos de radiación UV (intemperismo acelerado en cámaras QUV-Panel). Los cambios en las propiedades térmicas y estructurales, debido a los procesos de degradación de muestras de PLA-CW, fueron determinados usando Calorimetría Diferencial de Barrido, Espectroscopía de Infrarrojo, Difracción de Rayos-X, Resonancia Magnética Nuclear y Cromatografía de Permeación en Gel. Los resultados obtenidos muestran que existe un efecto sinérgico para el proceso de biodegradación, cuando las muestras PLA-CW son expuestas a intemperismo y posteriormente a biodegradación en suelo. La fotodegradación del material induce reacciones de hidrólisis, mejorando y acelerando el proceso de biodegradabilidad de PLA-CW, ya que el polímero compuesto se vuelve más susceptible a las reacciones bióticas. Los resultados reportados aquí indican que los materiales tienen un corto tiempo de vida media en ambientes bióticos y por lo tanto después de su uso son adecuados para su eliminación en suelo.

Palabras clave: intemperismo, biodegradación, whiskers de celulosa, biocompuestos de ácido poliláctico.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

References

ASTM D5208-01 American Society for Testing and Materials. Standard Practice for Fluorescent Ultaviolet (UV) Exposure of Photodegradable Plastics. Practices G151 y G154-06 (Standard Practice for Operating Fluorescent Light Apparatus for UV Exposure of Nonmetallic Materials).         [ Links ]

ASTM D6002 American Society for Testing and Materials "Standard Guide for Assessing the compostability of environmentally degradable plastics?, practice D5988-96 "Standard Test Method for determining aerobic biodegradation in soil of plastic materials or residual plastic materials after composting?.         [ Links ]

Auras R., Harte B. and Selke S. (2004). An overview o f polylactides as packaging materials. Macromolecular Bioscience 44, 835-864.         [ Links ]

Bolio-L.G., Valadez A. and Velava L. (2011). Whiskers de celulosa a partir de residuos agroindustriales de banano: obtención y caracterización. Revista Mexicana de Ingeniería Química 10, 291-299.         [ Links ]

Calmon A., Silvestre F., Bellon-Maurel V., Roger J.-M., and Feuilloley P. (1999). Modelling easily biodegradability of Materials in Liquid Medium-Relationthip between Structure and Biodegradability. Journal of Environmental Polymer Degradation 7, 135-144.         [ Links ]

Coates J. (2000). Interpretation of Infrared spectra, A Practical Approach. Encyclopedia of Analytical Chemistry. R.A. Meyers (Ed.) 10815-10837. John Wiley and Sons.         [ Links ]

Copinet A., Bertrand C., Govindin S., Coma V. and Couturier Y. (2004). Effects of ultraviolet light (315 nm), temperature and relative humidity on the degradation of polylactic acid plastic films. Chemosphere 555, 763-773.         [ Links ]

Cullity B.D. (1978). Elements of X-Ray Diffraction, second edition, Addison-Wesley, New York.         [ Links ]

Chlopek, J., Morewska-Chochol A., Paluzkiewicz C., Jaworska J., Kasperczyk J. and Dobrrznski P. (2009). FTIR and NMR study of poly (lactide-co-glycolide) and hydroxyapatite implant degradation under in vivo conditions. Polymer Degradation and Stability 94, 1479-1485.         [ Links ]

Furushashi, Y., Kimura Y. and Yamane H. (2007). Higher order structural analysis of stereocomplex-type poly(lactic acid) melt-spun fibers. Journal of Polymer Science Part B: Polymer Physics 45, 218-228.         [ Links ]

Gattin, R., Copinet A., Bertrand C. and Couturier Y. (2002). Biodegradation study of a starch and poly(lactic acid) coextruded material in liquid. composting and inert mineral media. lnternational Biodeterioration and Biodegradation 50, 25-31.         [ Links ]

Gaurav, K., Auras R. and Singh P. (2006). Degradation of commercial biodegradable packages under real composting and ambient exposure conditions. Journal of Polymers and the Environment 14, 317-334.         [ Links ]

González, M.F., Ruseckaite R.A. and Cuadrado T.R. (1999). Structural changes of polylactic-acid (PLA) microspheres under hydrolytic degradation. Journal of Applied Polymer Science 71, 1223-1230.         [ Links ]

Goppferich, A. (1997). Mechanism of polymer degradation and elimination. In: Domb A.J. Kost A., Wiseman D.M. (eds) Handbook of biodegradable polymer, Vol. 1 Hardwood Acad. 451-471.         [ Links ]

Ho K-L. G. and Pometto III A.L. (1999). Effects of electron-beam irradiation and ultraviolet light (365nm) on polylactic acid plastic films. Journal of Environmental Polymer Degradation 7, 93-100.         [ Links ]

Ho K-L. G., Pometto III A. L., Gadea-Rivas A., Briceño J.A. and Rojas A. (1999). Degradation of polylactic acid (PLA) plastic in Costa Rican soil and Iowa state university compost rows. Journal of Environmental Polymer Degradation 7, 173-177.         [ Links ]

Ikada E., and Ashida M. (1991). Promotion of photodegradation of polymers for plastic waste treatment. Journal of Photopolymer Science and Technology 4, 247-254.         [ Links ]

Ikada E. (1993). Role of the molecular structure in the photodecomposition of polymers. Journal of Photopolymer Sscience and Technology 6, 115-122.         [ Links ]

Ikada E. (1997). Photo- and bio-degradable polyesters. Photodegradation behaviors of aliphatic polyesters. Journal of Photopolymer Science and Technoogy 10, 265-270.         [ Links ]

Ikada E. (1995). Relationship between photodegradability and biodegradability of some aliphatic polyesters. Journal of Photopolymer Science and Technology 12, 251-256.         [ Links ]

Iovino R., Zullo R., Rao M.A., Cassar L. and Gianfreda L. (2007) Biodegradation of poly (lactic acid)/sterch/coir biocomposites under controlled composting conditions. Polymer Degradation and Stability 93, 147-157.         [ Links ]

Janokar A.V., Metters A.T. and Hirt D.E. (2007). Degradation of poly(L-lactide) films under ultraviolet-induced photografting and sterilization conditions. Journal of Applied Polymer Science 106, 1042-1047.         [ Links ]

Kawai F., Nakadai K., Nishioka E., Nakajima H., Ohara H., Mazaki K. and Lefuji H. (2011). Different enantioselectividad of two types of poly(lactic acid) depolymerases toward poly(lactic acid) and poly(D-lactic acid). Polymer Degradation and Stability 95, 1342-1348.         [ Links ]

Kumar R., Yakubu M.K. and Anandjiwala R.D. (2010). Biodegradation on flax fiber reinforced poly lactic acid. Polymer Letters 4, 423-430.         [ Links ]

Longineras A., Tanchete J.B., Erre D., Braud Ch. and Copinet A. (2007). Compostability of poly(lactide): degradation in an inert solid medium. Journal of Polymers and the Environment 15, 200-206.         [ Links ]

Lucas N., Bienaime C., Belloy C., Queneudec M., Silvestre F. and Nava-S J-E. (2008). Polymer biodegradation: Mechanism and estimation techniques. Chemosphere 73, 429-442.         [ Links ]

Mathew A.P., Oskman K., Sain M. (2006). The effect of morphology and chemical characteristics of reinforcements on the crystallinity of polylactic acid. Journal of Applied Polymer Science 101, 300-310.         [ Links ]

Pandey, J.K., Kumar A.P., Misra M., Mohanty A.K., Drzal L.T. and Singh R.P. (2005). Recent advances in biodegradable nanocomposites. Journal of Nanoscience and Nanotechnology 5, 497-526.         [ Links ]

Pandey, J.K., Lee C.S. and Han S-H. (2010). Preparation and properties of bio-nanofeinforced composites from biodegradable polymer matrix and cellulose whiskers. Journal of Applied Polymer Science 115, 2493-2501.         [ Links ]

Ristic I.S., Tanasié L., Nikolié L.B., Cakié S.M., Ilié O.Z., Rdicevié R.Z. and Budinski-Simidié J.K. (2011). The properties of poly(L-lactide) prepared by different synthesis procedure. Journal of Polymers and the Environment 19, 419-430.         [ Links ]

Rudnik E. and Briassoulis D. (2010). Comparative biodegradation in soil of two biodegradable polymers based on renewable resources. Journal of Polymers and the Environment 19, 18-39.         [ Links ]

Sakai W., Sadakane T., Nishimoto W., Nagata M. and Tsutsumi N. (2002). Photosensitized degradation and crosslink of linear aliphatic polyester studied by GPC and ESR. Polymer 43, 6231-6238.         [ Links ]

Sambha'a E.L., Lallam A. and Jada A. (2010). Effect of hydrothermal polylactic acid degradation on polymer molecular weight and surface properties. Journal of Polymers and the Environment 18, 532-538.         [ Links ]

Schnabel W. (1981). Polymer Degradation Principles and Practical Applications. Hanser Publisher. Oxford University Press, New York.         [ Links ]

Scott G. (1997). Abiotic control of polymer degradation. Trends in Polymer Science 5, 361-368.         [ Links ]

Segal L., Creely J., Martin A. and Conrad C. (1959). An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Textile Research Journal 29, 786-794.         [ Links ]

Tokiwa Y. and Calabia B.P. (2006). Biodegradability and biodegradation of polyester. Journal of Polymers and the Environment 15, 259-267.         [ Links ]

Torres A., Li S.M., Roussos S. and Vert M. (1996a). Degradation of L and DL-lactic acid oligomers in the presence of Fusarium moniliforme and Pseudomonas putida. Journal of Environmental Polymer Degradation 4, 213-223.         [ Links ]

Torres A., Li S.M., Roussos S. and Vert M. (1996b). Poly(lactic acid) degradation in soil or under controlled conditions. Journal of Applied Polymer Science 62, 2295-2302.         [ Links ]

Tsuji H., Echizen Y., Saha S.K. and Nishimura Y. (2005). Photodegradation of poly(L-lactic acid): effects of photosensitizer. Macromolecular Materials and Engineering 290, 1192-1203.         [ Links ]

Tsuji H., Echizen Y. and Nishimura Y. (2006). Photodegradation of biodegradable polyesters: a compehensive study on poly(L-lactic acid) and poly(ε-caprolactone). Polymer Degradation and Stability 91, 1128-1137.         [ Links ]

Tudorachi N., Cascaval C.N., Rusu M. and Pruteanu M. (2000). Testing of polyvinyl alcohol and starch mixtures as biodegradable polymeric materials. Polymer Testing 19, 785-799.         [ Links ]

Zhang, X., Espiritu M., Bilyk A. and Kurniawan L. (2008). Morphological behavior of poly(lactic acid) during hydrolytic degradation. Polymer Degradation and Stability 93, 1964-1970.         [ Links ]

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons