SciELO - Scientific Electronic Library Online

 
vol.12 número1Un análisis del metabolismo de Aspergillus niger creciendo sobre un sustrato sólidoCuantificación fractal de la corrosión de aluminio por picaduras inducida por el clima tropical húmedo índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de ingeniería química

versión impresa ISSN 1665-2738

Rev. Mex. Ing. Quím vol.12 no.1 Ciudad de México abr. 2013

 

Biotecnología

 

Espectroscopia de impedancia: un método rápido y eficiente para el monitoreo del crecimiento de Lactobacillus acidophilus

 

Impedance spectroscopy: an efficient and fast method to probe the growing of Lactobacillus acidophilus

 

M. Villa-García1*, R. Pedroza-Islas2, E. San Martin-Martínez1 y M. Aguilar-Frutis1

 

1 Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada del IPN, Legaria 694, Col. Irrigación, Del. Miguel Hidalgo, C.P. 11500, México D.F., México. * Autor para la correspondencia. E-mail: maty_vg@yahoo.com.mx Tel. 5729 6000, ext. 67755, Fax 53-95-41-47.

2 Universidad Iberoamericana, Prol. Paseo de la Reforma 880, Lomas de Santa Fe, México D.F., C.P. 01219, México D.F., México.

 

Recibido 4 de Octubre de 2012
Aceptado 28 de Febrero de 2013

 

Resumen

Una comparación entre la técnica de espectroscopia de impedancia eléctrica (EIE) y la técnica tradicional de conteo en placa fue realizada para estudiar el crecimiento del Lactobacillus acidophilus (La). Se encontró que, tras la inoculación, y después de 0.8 h, el crecimiento microbiano fue registrado por medio de la EIE, inferida a través del parámetro λ. En contraste, con la técnica de conteo en placa, el mismo parámetro se estimó en 6.8 h. Los datos experimentales obtenidos mediante la EIE fueron ajustados por un circuito RC en serie, posteriormente, las curvas generadas fueron ajustada a los modelos de crecimiento de Gomperte y Boltzmann. Usando écnica de espectroscopia de impedancia eléctrica, la resistencia del medio resultó la más eficiente para la estimación de los parámetros del crecimiento de Lactobacillus acidophilus.

Palabras clave: espectroscopia de impedancia, curva de crecimiento microbiológico, Lactobacillus acidophilus.

 

Abstract

In this work, a comparison between Impedance Spectroscopy (IS) and Plate Counting to probe the growth of Lactobacillus acidophilus (La) was done. It was found that after inoculation, and after 0.8 h, the microbial growth was noticed by IS, inferred by the λ parameter. In contrast, by means of the Plate Counting method, the growth was noticed after 6.8 h. The experimental data obtained by IS were first fitted by an RC series circuit, and then, the curves generated were modeled by the well-known growing models of Gompertz and Boltzmann. When using the IS technique, it was found that the resistance of the medium was a better parameter to describe the growing process of La.

Keywords: impedance spectroscopy, microbiology growing curves, Lactobacillus acidophilus.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Agradecimientos

M. Villa-García agradece al Consejo Nacional de Ciencia y Tecnología (CONACYT-México) la beca otorgada durante los estudios de posgrado dentro del programa en Tecnología Avanzada en CICATA-Legaria, del Instituto Politécnico Nacional. Igualmente, se agradece a la SIP-IPN el apoyo PIFI a través de los proyectos: 2013-0153, 2012-1458, 2011-1101, 2010-1556 y 2009-1158. El apoyo recibido por el Ing. Abel Tinoco Dávila en las pruebas microbiológicas es también reconocido.

 

Referencias

Aroom, K.R., Harting, M.T., Cox Jr., C.S., Radharkrishnan, R.S., Smith, C. y Gill, B.S. (2009). Bioimpedance Analysis: A Guide to Simple Design and Implementation. Journal of Surgical Research 153, 23-30.         [ Links ]

Arora, P., Sindhu, A., Dilbaghi, N. y Chaudhury, A. (2011). Review: Biosensors as innovative tools for the detection of food borne pathogens. Biosensors and Bioelectronics 28, 1-12.         [ Links ]

Cady, P., Dufour, S.W., Shaw, J. y Kraeger, J. (1978). Electrical impedance measurements: Rapid method for detecting and monitoring microorganism. Journal of Clinical Microbiology 3, 265-272.         [ Links ]

Curda, L. y Plocková, M. (1995). Impedance measurement of growth of lactic acid bacteria in dairy culture with honey addition. International Dairy Journal 5, 727-733.         [ Links ]

Dalgaard, P. y Koutsoumanis, K. (2001). Comparison of maximum specific growth rates and lag times estimates from absorbance and viable count data by different mathematical models. Journal of Microbiological Methods 43, 183-196.         [ Links ]

Domínguez-Bello, M.G. y Blaser, M.J. (2008). Do you have a probiotic in your future? Microbes and Infections 1, 1-5.         [ Links ]

Eden, G. y Eden, R. (1984). Enumeration of microorganisms by their dynamic ac conductance patterns. IEEE Transaction on Biomedical Engineering 2, 193-198.         [ Links ]

Fehrenbach, R., Comberbarch, M. y Petre, J.O. (1992). On-line biomass monitoring by capacitance measurement. Journal of Biotechnology 23, 303-314.         [ Links ]

Felice, C.J. y Valentinuzzi, M.E. (1999). Medium and interface components in impedance Microbiology. IEEE Transactions on Biomedical Engineering 12, 1483-1487.         [ Links ]

Felice, C.J., Madrid, R.E., Olivera, J.M., Rotger, V.I. y Valentinuzzi, M.E. (1999). Impedance microbiology: quantification of bacterial content in milk by means of capacitance growth curves. Journal of Microbiological Methods 35, 37-42.         [ Links ]

Ferreira, A.P., Vieira, L.M., Cardoso, J.P. y Menezes, J.C. (2005). Evaluation of a new anular capacitance probe for biomass monitoring in industrial pilot-scale fermentations. Journal of Biotechnology 116, 403-409.         [ Links ]

Flores-Flores, T.C., Gutiérrez-Rojas, M., Revah, E. y Favela-Torres, E. (2011). Comparative study for oxygenasas produced by Aspergillus niger, ATTCC 9642, in solid-state and submerged fermentation. Revista Mexicana de Ingeniería Química 10, 189-207.         [ Links ]

Gervais, P. y Molin, P. (2003). The role of water in solid-state fermentation. Biochemical Engineering Journal 13, 85-101.         [ Links ]

Gibson, D.M., Coombs, P. y Pimbley, D.W. (1992). Automated conductance method for the detection of salmonella in food: collaborative study. Journal of the AOAC International 75, 293-302.         [ Links ]

González-Vázquez, R., Azaola-Espinosa, A., Osorio-Revilla, G., Gallardo-Velázquez, T., Cruz-Victoria, T., Arana-Errasquin, R. y Rivera-Espinoza, Y. (2011). The effect of different carbon sources and salts in the production of naringinase by Aspergillus niger ATCC1015. Revista Mexicana de Ingeniería Química 10, 1-8.         [ Links ]

Grossi, M., Lanzoni, M., Pompei, A., Lazzarini, R., Matteuzzi, D. y Riccó, B. (2008). Detection of microbial concentration in ice-cream using the impedance technique. Biosensors and Bioelectronics 23, 1616-1623.         [ Links ]

Hause, L.L., Komorowski, R.A. y Gayon, F. (1981). Electrode and electrolyte impedance in the detection of bacterial growth. IEEE Transactions on Biomedical Engineering 5, 403-409.         [ Links ]

Inch, J.M. y Trinci, A.P.J. (1987). Effects of water activity on growth and sporulation of Paecilomyces farinosus in liquid and solid media. Journal of General Microbiology 133, 247-252.         [ Links ]

Perni, S., Andrew, P.W. y Shama, G. (2005). Estimating the maximum growth rate from microbial growth curves: definition is everything. Food Microbiology 22, 491-495.         [ Links ]

Ramírez, N., Regueiro, A., Arias, O. y Contreras, R. (2009). Electrochemical impedance spectroscopy: an effective tool for rapid microbiologic diagnosis. Biotecnología Aplicada 26, 65-71.         [ Links ]

Macdonald, J. R. (1987). Impedance Spectroscopy: Emphasizing Solid Materials and Systems. John Wiley & Sons, New York.         [ Links ]

Mayorga-Reyes, L., Calderón-Garza, E., Gutiérrez-Nava, A., González-Cervantes, R., Azaola-Espinosa, A. y Barranco-Florido, E. (2012). Characterization and expression of the chitinase chit II gene from Lecanicillum lecanii in solid-state fermentation. Revista Mexicana de Ingeniería Química 11, 97-104.         [ Links ]

Shah, N.P. y Ravula, R.R. (2000). Microencapsulation of probiotic bacteria and their survival in frozen fermented dairy dessert. Journal of Dairy Technology 3, 139-144.         [ Links ]

Walker, K., Ripandelli, N. y Flint, S. (2005). Rapid enumeration of Bifidobacterium lactis in milk powders using impedance. International Dairy Journal 15, 183-188.         [ Links ]

Yang, L., Ruan, C. y Li, Y. (2003). Detection of viable Salmonella typhimurium by impedance measurement of electrode capacitance and medium resistance. Biosensors and Bioelectronics 19, 495-502.         [ Links ]

Yates, G.T. y Smotzer. (2007). On the lag phase and initial decline of microbial growth curves. Journal of Theoretical Biology 244, 511-517.         [ Links ]

Zwietering, M.H., Rombouts, F.M. y Van't Riet, K. (1992). Comparison of definitions of the lag phase and the exponential phase in bacterial growth. Journal ofApplied Bacteriology 72, 139-145.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons