SciELO - Scientific Electronic Library Online

 
vol.9 número3Propiedades superficiales de hidrolizados proteínicos de maíz, pescado y suero de bovinoDiagnóstico del desarrollo de biorrefinerías en México índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de ingeniería química

versión impresa ISSN 1665-2738

Rev. Mex. Ing. Quím vol.9 no.3 Ciudad de México dic. 2010

 

Biotecnología

 

Emulsifying properties of the gum produced by Prosopis laevigata (Humb. & Bonpl. ex Willd) M.C. Johnst (Mesquite) cells suspension culture in bioreactor

 

Propiedades emulsificantes de la goma producida por cultivo de células en suspensión de Prosopis laevigata (Humb. & Bonpl. ex Willd) M.C. Johnst (Mezquite) en un biorreactor

 

J.L. Trejo–Espino1,2, M. Rodríguez–Monroy 2*, E.J. Vernon–Carter3 and F. Cruz–Sosa1

 

1 Departamento de Biotecnología, Universidad Autónoma Metropolitana–Iztapalapa, A v. San Rafael Atlixco No. 186, Col. Vicentina, CP 09340, Mexico DF, México.

2 Departamento de Biotecnología, Centro de Desarrollo de Productos Bióticos del Instituto Politécnico Nacional, PO Box 24, CP 62730, Yautepec, Morelos, Mexico. *Corresponding author. E–mail: mrmonroy@ipn.mx

3 Departamento de Ingeniería de Procesos e Hidráulica, Universidad Autónoma Metropolitana–Iztapalapa, Av. San Rafael Atlixco No. 186, Col. Vicentina, CP 09340, México DF, México.

 

Received 27 of October 2010.
Accepted 29 of November 2010.

 

Abstract

The mesquite gum (MG) production from Prosopis laevigata cells suspension culture in a stirred tank type bioreactor, with characteristics similar to those of MG obtained from wild trees are reported. The cells showed a specific growth rate (μ) of 0.08 1/d and a viability of over 60 %, reaching a maximum biomass of 16.6 g dry mass (dm)/L after 14 d. The cells produced a gum made up by 83.5% of carbohydrates (L–arabinose, D–galactose and glucuronic acid) and 8.1% of protein, also detected arabinogalactan–proteins (AGPs) as constituents of the gum. Oil–in–water emulsions were p repared usmg as continuous phase aqueous solutions of MG obtained from wild trees and that produced in bioreactor (MGb). The emulsifying capacity of MGb was slightly superior, but the emulsion stability lower, than that obtained with MG.

Keywords: Prosopis laevigata, mesquite gum, stirred tank type bioreactor, arabinogalactan–proteins, emulsifying properties.

 

Resumen

Se reporta la producción de goma de mezquite (GM) en un cultivo de células en suspensión de Prosopis laevigata a nivel de biorreactor, cuyas características son similares a la GM obtenida de árboles silvestres. Las células mostraron una velocidad específica de crecimiento (μ) de 0.08 1/d y una viabilidad superior al 60%, alcanzando una biomasa máxima de 16.6 g en masa seca (ms)/L a los 14 d. Las células produjeron una goma compuesta de 83.5% de carbohidratos (L–arabinosa, D–galactosa y ácido glucurónico) y 8.1% de proteína, además se detectó la presencia de arabinogalactano–proteínas (AGPs) como constituyentes de la goma. Se prepararon emulsiones aceite–en–agua utilizando como fase continua soluciones acuosas de goma obtenida de árboles silvestres (GM) y producida en el biorreactor (GMb). La capacidad emulsificante de GMb fue ligeramente mayor, pero la estabilidad de la emulsión menor, que las obtenidas con GM.

Palabras clave: Prosopis laevigata, goma de mezquite, biorreactor tipo tanque agitado, arabinogalactano–proteínas, propiedades emulsificantes.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Acknowledgements

The authors wish to thank the Instituto Politiecnico Nacional (IPN) for the partial financing of this project through grant SIP 20100401. Author JLTE thanks, both IPN and el Consejo Nacional de Ciencia y Tecnologiía (CONACyT) for the financing of his doctoral studies.

 

References

Anderson, D.M., Howlett, J.F. and MacNab, C.G.A. (1985). The amino acid composition of gum exudates from Prosopis species. Phytochemistry 24, 2718–2720.         [ Links ]

Báez–González, J.G., Pérez–Alonso, C., Beristain, C.I., Vernon–Carter, E.J. and Vizcarra–Mendoza, M.G. (2004). Effective moisture diffusivity in biopolymer drops by regular regime theory. Food Hydrocolloids 18, 325–333.         [ Links ]

Beristain, C.I. and Vernon–Carter, E.J. (1995). Studies of the interactions of Arabic (Acacia senegal) and mesquite (Prosopis juliflora) gum as emulsion stabilizing agents for spray dried encapsulated orange peel oil. Drying Technology 13, 455–461.         [ Links ]

Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Analytical Biochemistry 72, 248–254.         [ Links ]

Capataz–Tafur, J., Hernández–Sánchez, A., Rodríguez–Monroy, M., Trejo–Tapia, G. and Sepúlveda–Jiménez, G. (2010). Sucrose induces arabinogalactan protein secretion by Beta vulgaris L. cell suspension cultures. Acta Physiologiae Plantarum 32 (4), 757764.         [ Links ]

Classen, B. and Blaschek, W. (2002). An arabinogalactan–protein from cell culture of Malva sylvestris. Planta Medica 68, 232–236.         [ Links ]

Classen, B. (2007). Characterization of an arabinogalactan–protein from suspension culture of Echinacea purpurea. Plant Cell Tissue and Organ Culture 88, 267–275.         [ Links ]

Darjania, L., Ichise, N., Ichikawa, S., Okamoto, T., Okuyama, H. and Thompson, G.A. (2002). Dynamic turnover of arabinogalactan proteins in cultured Arabidopsis cells. Plant Physiology and Biochemistry 40, 69–79.         [ Links ]

Dickinson, E. (2003). Hydrocolloids at interfaces and the influence on the properties of dispersed systems. Food Hydrocolloids 17, 25–39.         [ Links ]

Doran, P. (1995). Bioprocess Engineering Principles. Academic Press, London.         [ Links ]

Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A and Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry 28, 350–356.         [ Links ]

Ellis, M., Ejelund, J., Shultz, C.J. and Bacic, A. (2010). Arabinogalactan–proteins (AGPs): Key regulators at the cell surface? Plant Physiology DOI: 10.1104/pp110.156000.         [ Links ]

Gunter, E.A. and Ovodov, Y.S. (2007). Polysaccharides of cell cultures of Silene vulgaris. Applied Biochemistry and Microbiology 43, 84–90.         [ Links ]

Kieran, P., MacLoughlin, P. and Malone, D. (1997). Plant cell suspension cultures: Some engineering considerations. Journal of Biotechnology 59, 39–52.         [ Links ]

López–Franco, Y., Valdez M.A., Hernández, J., Calderón de la Barca, A.M., Rinaudo, M. and Goycoolea, F.M. (2004). Macromolecular dimensions and mechanical properties of monolayer films of Sonorean mesquite gum and its fractions. Macromolecular Bioscience 4, 865–874.         [ Links ]

Meijer, J.J., Tenhoopen, H.J.G., Vangameren, Y.M., Luyben, K.C.A.M. and Libbenga, K.R. (1994). Effects of hydrodynamic stress on the growth of plant cells in batch and continuous–culture, Enzyme and Microbial Technology 16(6), 467–477.         [ Links ]

Murashige, T. and Skoog, F. (1962). A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiology Plant 15,473–497.         [ Links ]

Orozco–Sánchez, F. (2009). Efecto de la oferta de oxígeno sobre el crecimiento y la producción de terpenoides con células de Azadirachta indica en un biorreactor. Ph.D. Thesis, Centro de Desarrollo de Productos Bioiticos del IPN, Yautepec, Mexico.         [ Links ]

Orozco–Villafuerte, J., Ponce–Alquira, E., Cruz–Sosa, F. and Vernon–Carter, E.J. (2003). Mesquite gum: fractionation and characterization of the gum exuded from Prosopis laevigata obtained from plant tissue culture and from wild trees. Carbohydrate Polymers 54, 327–333.         [ Links ]

Orozco–Villafuerte, J., Buendía–González, L., Cruz–Sosa, F.and Vernon–Carter, E.J. (2005). Increased mesquite gum formation in nodal explants cultures after treatment with microbial biomass preparation. Plant Physiology and Biochemistry 54,327–333.         [ Links ]

Pan, Z.W., Wang, H.Q. and Zhong, J.J. (2000). Scale–up on suspension cultures of Taxus chinensis cells for production of taxanediterpene. Enzyme and Microbial Technology 27, 714–723.         [ Links ]

Pareilleus A. and Vinas R. (1983). Influence of aeration rate on the growth yield in suspension cultures of Catharanthus roseus (L) G Don. Journal of Fermentation Technology 61, 429–433.         [ Links ]

Pearce, K.N. and Kinsella, J.E. (1978). Emulsifying properties of proteins: Evaluation of a turbidimetric technique. Journal of Agricultural and Food Chemistry 26, 716–723.         [ Links ]

Prakash, G. and Srivastava, A.K. (2007). Azadirachtin production in stirred tank reactors by Azadirachta indica suspension culture. Process Biochemistry 42, 93–97.         [ Links ]

Raposo, S. and Lima–Costa, M.E. (2006). Rheology and shear stress of Centaurea calcitrapa cell suspension cultures grown in bioreactor. Biotechnology Letters 28, 431438.         [ Links ]

Rodríguez–Huezo, M.E., Pedroza–Islas, R., Prado–Barragán, L.A., Beristain, C.I. and Vernon–Carter, E.J. (2004). Microencapsulation by spray–drying of multiple emulsions containing carotenoids. Journal of Food Science 69, E351–E359.         [ Links ]

Rodríguez–Monroy, M. and Galindo, E. (1999). Broth rheology, growth and metabolite production of Beta vulgaris suspension culture: a comparative study between cultures grown in shake flasks and in a stirred tank. Enzyme and Microbial Technology 24, 687–693.         [ Links ]

Román–Guerrero, A., Orozco–Villafuerte, J., Pérez–Orozco, J.P., Cruz–Sosa F., Jiménez–Alvarado, R. and Vernon–Carter, EJ. (2009). Application and evaluation of mesquite gum and its fractions as interfacial film formers and emulsifiers of orange peel–oil. Food Hydrocolloids 23, 708–713.         [ Links ]

Ruíz–Ramos, J.O., Pérez–Orozco, J.P., Báez–González, J.G., Bózquez–Molina, E., Pérez–Alonso, C. and Vernon–Carter, E.J. (2006). Interrelationship between the viscoelastic properties and effective moisture diffusivity of emulsions with the water vapor permeability of edible films stabilized by mesquite gum–chitosan complexes. Carbohydrate Polymers 64, 355–363        [ Links ]

Sánchez–Sampedro, M.A., Peláez, R. and Corchete, P. (2008). An arabinogalactan protein isolated from medium of cell suspension cultures of Silybum marianum (L.) Gaernt. Carbohydrate Polymers 71, 634–639.         [ Links ]

Schlatmann J.E., Moreno P.R.H., Vinke J.L., ten Hoopen H.J.G., Verpoorte R. andHeijnen J.J. (1994). Effects of oxygen and nutrients limitation on ajmalicine production and related enzyme activities in high density cultures of Catharanthus roseus. Biotechnology and Bioengineering 44, 461– 468.         [ Links ]

Serpe, M.D. and Nothnagel, E.A. (1994). Effects of Yariv phenylglycosides on rosa cell–suspensions–evidence for the involvement of arabinogalactan–proteins in cell proliferation. Planta 193, 542–50        [ Links ]

Trejo–Espino, J.L., Rodríguez–Monroy, M. and Cruz–Sosa, F. (2009). Establecimiento de un cultivo de celulas en suspensián de Prosopis laevigata (Mezquite) para la produccion de goma. Presentation OII–12. June 2126. Acapulco, Guerrero: XIII Congreso Nacional de Biotecnología y Bioingeniería.         [ Links ]

Trejo–Tapia, G., Sepúlveda–Jiménez, G., Trejo–Espino, J.L., Cerda–García–Rojas, C.M., De la Torre, M. and Ramos–Valdivia A.C. (2007). Hydrodynamic stress induces monoterpenoid oxindole alkaloid accumulation by Uncaria tomentosa (Will) D.C. cell suspension cultures via oxidative burst. Biotechnology and Bioengineering 98, 230–238.         [ Links ]

Van Holst, G.J. and Clarke, A. (1985). Quantification of arabinogalactan–protein in plant extracts by single radial diffusion gel. Analytical Biochemistry 148, 446–450.         [ Links ]

Vázquez–Ortíz, F.A., López–Franco, Y. and Goycoolea, F.M. (2006). Fractionation and characterization of the monosaccharides from mesquite Prosopis spp. and arabic gum by normal, bonded phase, HPLC. Journal of Liquid Chromatography and Related Techniques 29, 1991–1999.         [ Links ]

Verbeken, D., Dierckx, S. and Dewettinck, K. (2003). Exudate gums: occurrence, production, and applications. Applied Microbiology and Biotechnology 63, 10–21.         [ Links ]

Vernon–Carter, E.J., Gómez, S.A., Beristain, C.I., Mosqueira, G., Pedroza–Islas, R. y Moreno–Terrazas, R.C. (1996). Color degradation and coalescence kinetics of aztec marigold oleoresin–in–water emulsions stabilized by mesquite or arabic gums and their blends. Journal of Texture Studies 27, 625–641.         [ Links ]

Vernon–Carter, E.J., Pedroza–Islas, R. y Beristain, C.I. (1998). Stability of Capsicum annuum oleoresin–in–water emulsions containing Prosopis and Acacia gums. Journal ofTexture Studies 29, 553–567.         [ Links ]

Vernon–Carter, E.J., Beristain, C.I and Pedroza–Islas, R. (2000). Mesquite gum (Prosopis gum). In: Novel Macromolecules in Food Systems, (G. Doxastakis G and V. Hiosseoglu, eds.), Pp. 217–238. Elsevier, Amsterdam.         [ Links ]

Villagómez–Zavala, D.L., Gómez–Corona, C., San Martín–Martínez, E., Pérez–Orozco, J.P., Vernon–Carter, E.J. and Pedroza–Islas, R. (2008). Comparative study of the mechanical properties of edible films made from single and blended hydrophilic biopolymer matrices. Revista Mexicana de Ingeniería Química 7, 263–273.         [ Links ]

Xu, J, Shpak, E., Gu, T., Moo–Young, M. and Kieliszewski, M. (2005) Production of recombinant plant gum with tobacco cell culture in bioreactor and gum characterization. Biotechnology and Bioengineering 90, 578–588.         [ Links ]

Zhao, J. and Verpoorte, R. (2007). Manipulating indole alkaloid production by Catharauthws rosews cell cultures in bioreactors: from biochemical processing to metabolic engineering. Phytochemistry Reviews 6, 435457.         [ Links ]

Zhong, J.J. (2001). Biochemical Engineering of the Production of plant–Specific Secondary Metabolites by Cell Suspension Cultures. In: Plant Cells Advances in Biochemical Engineering Biotechnology, (J.J. Zhong, Ed.), Pp. 1–26. Springer, Germany.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons