SciELO - Scientific Electronic Library Online

 
vol.9 número2Evaluación de compositos TiO2/clinoptilolita en la fotodegradación del tinte MV-2B en un reactor-concentrador solar CPC índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de ingeniería química

versión impresa ISSN 1665-2738

Rev. Mex. Ing. Quím vol.9 no.2 Ciudad de México ago. 2010

 

Biotecnología

 

Estado del arte en la manipulación de proteínas empleando dielectroforesis

 

State of the art on protein manipulation employing dielectrophoresis

 

L.D. Garza–García1 y B.H. Lapizco–Encinas2*

 

1 Centro de Biotecnología, Tecnológico de Monterrey, Campus Monterrey. Ave. Eugenio Garza Sada 2501 Sur, Monterrey, NL 64849, México.

2 Centro de Investigación y de Estudios Avanzados del IPN Unidad Monterrey, Via del Conocimiento 201, Parque de Investigación e Innovación Tecnológica, Autopista Monterrey–Aeropuerto km 9.5, Apodaca NL, 66600, Mexico. * Autora para la correspondencia. E–mail: blapizco@cinvestav.mx Tel. (81) 1156–1740, ext. 4512 Fax (81) 1156–1741.

 

Recibido 8 de Abril 2010.
Aceptado 4 de Junio 2010.

 

Resumen

Los microsistemas para análisis o laboratorios montados en un microdispositivo están tomando cada vez mayor importancia en el campo de las bioseparaciones. Estos microsistemas pueden realizar todas las funciones de un equipo de laboratorio convencional, con las ventajas de realizar el análisis más rápido, requerir menos muestra y ser portátiles. Existe un interés creciente en el desarrollo de técnicas de bioseparación aplicables en microescala. Entre las técnicas más utilizadas en microescala se encuentra la dielectroforesis. La dielectrophoresis consiste en el movimiento de partículas, resultado de la polarización inducida por campos eléctricos no uniformes. Es un método de respuesta rápida con selectividad suficiente para la manipulación y separación de biopartículas, tales como microorganismos y biomoléculas (proteínas y ADN).

Debido a la gran importancia de las proteínas en los procesos biotecnológicos y farmacéuticos, este artículo presenta un análisis de los avances alcanzados en procesos de separación, concentración y purificación de proteínas empleando la técnica de dielectroforesis en microdispositivos. Se incluyen los logros obtenidos por importantes grupos de investigación alrededor del mundo en el uso de esta técnica en microescala para la manipulación de partículas de proteínas. Se seleccionaron estratégicamente importantes grupos de investigación y sus resultados con el objetivo de mostrar al lector el panorama sobre el estado del arte en el empleo de la técnica de dielectroforesis para la manipulación y concentración de proteínas en microdispositivos.

Palabras clave: proteínas, dielectroforesis, microescala, microsistemas, microdispositivos, bioseparaciones.

 

Abstract

Microanalytical systems or lab–on–a–chip devices are becoming more important in the field of bioseparations. These microsystems are able to handle the same tasks as conventional lab equipments with the advantages of faster analysis time, requiring less sample and being portable. There is a growing interest on the development of bioseparation techniques applicable at microscale. Dielectrophoresis (DEP) is among the most used microscale techniques. DEP is the movement of particles as result of polarization effects due to nonuniform electric fields. DEP is a fast response method, with enough selectivity for the manipulation and separation of bioparticles such as microorganisms and macromolecules (proteins and DNA).

Due to the importance of proteins in biotechnological and pharmaceutical processes, this article presents an analysis of the advances in the area of separation, concentration and purification processes of proteins, employing the technique of dielectrophoresis at microscale. The findings of important research groups around the world are included in the use of this microscale technique for protein manipulation. Important research groups were strategically selected with the objective of providing the reader with an overview on the state of the art on the utilization of dielectrophoresis for the manipulation and concentration of protein in microdevices.

Keywords: proteins, dielectrophoresis, microscale, microsystems, microdevices, bioseparations.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Agradecimientos

Las autoras agradecen el apoyo económico proporcionado por CONACYT dentro de la convocatoria de Ciencia Básica 2006, proyecto número CONACYT–CB–2006–53603, y apoyo por CINVESTAV–Monterrey

 

Referencias

Clarke, R.W., Piper, J.D., Ying, L. y Klenerman, D. (2007). Surface conductivity of biological macromolecules measured by nanopipette dielectrophoresis. Physical Review Letters 98, 198102.1–198102.4.         [ Links ]

Clarke, R.W., White, S.S., Zhou, D., Ying, L. y Klenerman, D. (2005). Trapping of proteins under physiological conditions in a nanopipette. Angewandte Chemie 44i 3747–3750.         [ Links ]

Cummings, E.B. y Singh, A.K. (2003). Dielectrophoresis in microchips containing arrays of insulating posts: Theoretical and experimental results. Analytical Chemistry 75(18), 4724–4731.         [ Links ]

Gallo–Villanueva, R.C., Rodríguez–López, C.E., Díaz–de–la–Garza, R.I., Reyes–Betanzo, C. y Lapizco–Encinas, B.H. (2009). DNA manipulation by means of insulator–based dielectrophoresis employing direct current electric fields. Electrophoresis 30(24), 4195–4205.         [ Links ]

Holzel, R., Calander, N., Chiragwandi, Z., Willander, M. y Bier, F.F. (2005). Trapping single molecules by dielectrophoresis. Physical Review Letters 95(12), 128102.1–128102.4.         [ Links ]

Holzel, R., Calander, N., Chiragwandi, Z., Willander, M. y Bier, F.F. (2006). Reply comment "trapping single molecules by dielectrophoresis". Physical Review Letters 96(19), 199802.1–199802.1.         [ Links ]

Hughes, M.P. (2002). Nanoelectromechanics in engineering and biology. Boca Raton, FL, CRC Press.         [ Links ]

Hughes, M.P. y Morgan, H. (2001). Positive and negative dielectrophoretic manipulation of avidin. 1st European Workshop on Electrokinetics and Electrohydrodynamics, Glasgow, UK, September 6th–8th.         [ Links ]

Kang, L., Chung, B.G., Langer, R. y Khademhosseini, A. (2008a). Microfluidics for drug discovery and development: From target selection to product lifecycle management. Drug Discovery Today 13(1–2), 1–13.         [ Links ]

Kang, Y., Li, D., Kalams, S. y Eid, J. (2008b). DC–dielectrophoretic separation of biological cells by size. Biomedical Microdevices 10(2), 243–249.         [ Links ]

Kawabata, T. y Washizu, M. (2001). Dielectrophoretic detection of molecular bindings. IEEE Transactions on Industry Applications 37(6), 1625–1633.         [ Links ]

Lapizco–Encinas, B.H. (2008). Aplicaciones de microfluídica en bioseparaciones. Revista Mexicana de Ingeniería Química 7(3), 205–214.         [ Links ]

Lapizco–Encinas, B.H., Ozuna–Chacón, S. y Rito–Palomares, M. (2008). Protein manipulation with insulator–based dielectrophoresis and dc electric fields. Journal of Chromatography A 1206(1), 45–51.         [ Links ]

Lapizco–Encinas, B.H. y Rito–Palomares, M. (2007). Dielectrophoresis for the manipulation of nanobioparticles. Electrophoresis 28(24), 4521–4538.         [ Links ]

Moncada–Hernández, H. y Lapizco–Encinas, B.H. (2010). Simultaneous concentration and separation of microorganisms: Insulator–based dielectrophoretic approach. Analytical and Bioanalytical Chemistry 396(5), 1805–1816.         [ Links ]

Ozuna–Chacón, S., Lapizco–Encinas, B.H., Rito–Palomares, M., Collado–Arredondo, E. y Martínez Chapa, S.O. (2007). Dielectroforesis con estructuras aisladoras. Revista Mexicana de Ingeniería Química 6(3), 329–335.         [ Links ]

Pohl, H.A. y Hawk, I. (1966). Separation of living and dead cells by dielectrophoresis. Science 152(3722), 647–649.         [ Links ]

Quinn, CM., Archer, G.P., Betts, W.B. y O'Neill, J.G. (1996). Dose–dependent dielectrophoretic response of cryptosporidium oocysts treated with ozone. Letters in Applied Microbiology 22(3), 224–228.         [ Links ]

Regtmeier, J., Duong, T.T., Eichhorn, R., Anselmetti, D. y Ros, A. (2007). Dielectrophoretic manipulation of DNA: Separation and polarizability. Analytical Chemistry 79(10), 3925–3932.         [ Links ]

Simmons, B.A., McGraw, G.J., Davalos, R.V., Fiechtner, G.J., Fintschenko, Y. y Cummings, E.B. (2006). The development of polymeric devices as dielectrophoretic separators and concentrators. MRS Bulletin 31, 120–124.         [ Links ]

Voldman, J. (2006). Electrical forces for microscale cell manipulation. Annual Review of Biomedical Engineering 8, 425–454.         [ Links ]

Washizu, M. (2005). Biological applications of electrostatic surface field effects. Journal of Electrostatics 63(6–10), 795–802.         [ Links ]

Washizu, M., Suzuki, S., Kurosawa, O., Nishizaka, T. y Shinohara, T. (1994). Molecular dielectrophoresis of biopolymers. IEEE Transactions on Industry Applications 30(4), 835–843.         [ Links ]

Whitesides, G.M. (2006). The origins and the future of microfluidics. Nature 442(7101), 368–373.         [ Links ]

Ying, L., Zhou, D. y Bruckbauer, A. (2006). Comment on "trapping single molecules by dielectrophoresis". Physical Review Letters 96(19), 199801.1–199801–1.         [ Links ]

Zheng, L., Burke, P.J. y Brody, J.P. (2004a). Electronic manipulation of DNA and proteins for potential nano–bio circuit assembly. Proceedings of SPIE: Nanobiophotonics and Biomedical Applications, Bellingham, WA, January 24–26, 5331, 126–135.         [ Links ]

Zheng, L.F., Brody, J.P. y Burke, P.J. (2004b). Electronic manipulation of DNA, proteins, and nanoparticles for potential circuit assembly. Biosensors & Bioelectronics 20(3), 606–619.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons