SciELO - Scientific Electronic Library Online

 
vol.8 número3Localización de una planta industrial: Revisión crítica y adecuación de los criterios empleados en esta decisiónComportamiento de la digestión anaerobia mesofílica y termofílica en la estabilización de lodos residuales municipales (Parte 1) índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Revista mexicana de ingeniería química

versão impressa ISSN 1665-2738

Rev. Mex. Ing. Quím vol.8 no.3 Ciudad de México Dez. 2009

 

Ingeniería ambiental

 

Comparison of advanced techniques for the treatment of an indigo model solution: Electro incineration, chemical coagulation and enzymatic

 

Comparación de ténicas avanzadas para el tratamiento de una solución modelo de índigo: Electro incineración, coagulación, química y enzimático

 

M. Solís–Oba1*, M. Eloy–Juárez1, M. Teutli2, J. L. Nava3 e I. González4

 

1 Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada, Carretera Estatal Santa Inés Tecuexcomac–Tepetitla Km. 1.5, Tepetitla de Lardizábal, Tlaxcala C.P. 90700. * Corresponding author. E–mail: myrobatlx@yahoo.com.mx Phone and Fax: 01 248 48 70 762

2 Facultad de Ingeniería, Benemérita Universidad Autónoma de Puebla, Av. San Claudio entre 18 y 22 Sur, Col. Ciudad Universitaria. C.P. 72560, Puebla, México.

3 Departamento de Ingeniería Geomática e Hidráulica, Universidad de Guanajuato, Av. Juárez No. 77, Zona Centro, C.P. 36000, Guanajuato, Gto.

4 Departamento de Química, Universidad Autónoma Metropolitana, Av. San Rafael Atlixco # 186. Col. La Vicentina. C.P. 09340, México, D.F., México.

 

Received 11 of March 2009
Accepted 28 of September 2009

 

Abstract

Indigo blue is one of the most important textile dyes. The wastewaters for indigo blue used are thought to be contaminated because; indigo can be oxidized to isatin, which is hydrolyzed to antranilic acid, a compound that is toxic to aquatic life. Indigo oxidation was evaluated using a model solution that simulated a textile wastewater. Three oxidation systems: electro incineration, chemical coagulation using Al2 (SO4)3, and enzymatic degradation with laccase. With electro incineration, the indigo solution was completely discolored; chemical oxidation demand diminution was 98% in approximately 3 hours and indigo blue was mineralized with no sludge production. Chemical coagulation with 40 mg L–1 sulfate aluminum removed some color though control of pH was necessary. At pH 5, the chemical oxygen demand was reduced by 76%, with sludge formation. Laccase enzyme, processing required 72 hours for complete discoloration of the indigo model solution; chemical oxidation demand diminution was nearby 50%, but laccase could not mineralize the dye. Toxicity assays indicated that the processes generated more toxic products than the control.

Keywords: electro incineration, indigo, oxidation, chemical coagulation, laccase, toxicity.

 

Resumen

El azul índigo es de los colorantes textiles más utilizados, las descargas que lo contienen son contaminantes porque, según algunos reportes, el índigo se oxida a isatin, compuesto fácilmente hidrolizable a ácido antranílico, sustancia tóxica para la vida acuática. Se evaluó la oxidación del índigo usando una solución modelo similar a las descargas textiles. La comparación se hizo con tres sistemas: electroincineración, coagulación y enzimático con lacasa. Con la electroincineración el índigo fue completamente decolorado y la demanda química de oxígeno disminuyó 98% en aproximadamente 3 horas, el índigo se mineralizó sin formación de lodos. La coagulación química, usando 40 mg L–1 de sulfato de aluminio, removió parte del color; sin control de pH la reducción de la demanda química de oxígeno fue despreciable, mientras que controlando el pH a 5 durante la prueba de jarras, la demanda química de oxígeno disminuyó 76%; hubo formación de lodos. Con la enzima lacasa, la decoloración fue en 72 h, la demanda química de oxigeno disminuyó en 50%, la lacasa no mineralizó el colorante. La prueba de toxicidad mostró que los tres procesos formaron productos más tóxicos que el índigo.

Palabras clave: electroincineración, índigo, oxidación, coagulación química, lacasa, toxicidad.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Acknowledgements

This work was made possible through a grant from CONACYT (Ciencia Básica–2008–85011). Manuel E. Juárez had a fellowship from CONACyT, authors thank Timothy D. Landry (Peace Corps/SEMARNAT) for his technical help.

 

References

Abadulla, E., Tzanko, T., Costa, S., Robra, K, Cavaco–Paulo, A., and Gubitz, G. (2000). Decolorization and detoxification of textile dyes with a lacasa from trametes hirsuta. Applied and Environmental Microbiology 66, 3357–3362.         [ Links ]

Ammar, S., Abdelhedi, R., Flox, C., Arias, C. and Brillas, E., (2006). Electrochemical degradation of the dye indigo carmine at boron–doped diamond anode for wastewaters remediation. Environmental Chemistry Letters 4(4), 229–233.         [ Links ]

Bahadir, K., Körbahti, and Abdurrahman, T. (2003). Continuous electrochemical treatment of phenolic wastewater in a tubular reactor, Water Research 37 (7), 1505–1514.         [ Links ]

Barber, E. (1992) Prehistoric textiles: The development of cloth in the neolithic and bronze ages with special reference to the Aegean. Princeton University Press, 236.         [ Links ]

Bechtold, T., Turcanu, A., Campese, R., Maier, P. and Schrott W. (2006a). On–site formation of hypochlorite for indigo oxidation: Scale–up and full scale operation of an electrolyser for denim bleach processes. Journal of Applied Electrochemistry 36(3), 287–293.         [ Links ]

Bechtold, T., Turcanu, A. and Schrott, W. (2006b) Electrochemical decolourisation of dispersed indigo on boron–doped diamond anodes. Diamond and Related Materials 15(10), 1513–1519.         [ Links ]

Bedoui, A., Ahmadi, M., Bensalah, N. and Gadri, A. (2009). Comparative study of Eriochrome black T treatment by BDD–anodic oxidation and Fenton process Chemical Engineering Journal 146(1), 98–104.         [ Links ]

Blagoi, O., Manole, A. and Manole, M. (2002). The Effect of Multiple Properties of Aluminium Sulphate in Surface Water Treatment. Ovidius University Annals of Construction 1(3–4), 613–618.         [ Links ]

Butrón, E., Juárez, M., Solis, M., Teutli, M., González, I. and Nava, J. (2007). Electrochemical incineration of indigo textile dye in filter–press–type FM01–LC electrochemical cell using BDD electrodes. Electrochimica Acta 52, 6888–6894.         [ Links ]

Camarero, S., Ibarra, D., Martínez, M. and Martínez A. (2005). Lignin–derived compounds as efficient laccase mediators for decolorization of different types of recalcitrant dyes. Applied and Environmental Microbiology 71(4), 1775–1784.         [ Links ]

Campos, R., Kandelbauer, A., Robra, K., Cavaco–Paulo, A. and Gubitz G. (2001). Indigo degradation with purified laccases from Trametes hirsuta and Sclerotium rolfsii. Journal of Biotechnology. 89(2–3), 131–139.         [ Links ]

Cañizares, P., Martínez, F., Jiménez, C., Lobato, J. and Rodrigo, M. (2006). Coagulation and electrocoagulation of wastes polluted with dyes. Environmental Science and Technology 40(20), 6418–6424.         [ Links ]

Chen, X., Gao, F. and Chen, G. (2005). Comparison of Ti/SnO2–Sb2O5 electrodes for pollutan oxidation. Journal of Applied Electrochemistry 35(2), 185–191.         [ Links ]

Dogan, D. and Haluk, T. (2005). Electrochemical oxidation of textile dye indigo. Journal of Chemical Technology and Biotechnology 80(8), 916–923.         [ Links ]

Erkurt, E., Ünyayar, A. and Kumbur, H. (2007). Decolorization of synthetic dyes by white rot fungi, involving laccase enzyme in the process. Process Biochemistry 42 (10), 1429–1435.         [ Links ]

Faouzi, M., Cañizares, P., Gadri, A., Lobato, J., Nasr, B., Paz, R., Rodrigo, M. and Sáez, C. (2006) . Advanced Oxidation Processes for the Treatment of Wastes Polluted with Azoic Dyes. Electrochimica Acta 52(1), 325 –331.         [ Links ]

Greca, M., Pessoa, M. and Costa–Ferreira, M. (2001). Use of laccase togheter with redox mediators to decolourize Remozol Brilliant Blue R. Journal of Biotechnology 89(2–3), 123–129.         [ Links ]

Griffiths, M., Ponce de León, C. and Walsh, F. (2005). Mass transport in the rectangular chanel of a filter–press electrolyzer (the FM01–LC reactor). AIChE Journal 51(2), 682–687.         [ Links ]

Gursharan, S., Neena, C., Rashmi, G. and Prince, S. (2007) . A pH–stable laccase from alkali–tolerant y–proteobacterium JB: Purification, characterization and indigo carmine degradation. Enzyme and Microbial Technology 41(6–7), 794–799.         [ Links ]

Holt, K., Barton, G., Wark, M. and Mitchell, C. (2002). A quantitative comparison between chemical dosing and electrocoagulation. Colloids and surfaces. A, Physicochemical and engineering 211(2–3), 233.248         [ Links ]

Kandelbauera, A., Erlacherb, A., Cavaco–Paulo, A. and Guebitz G. (2004). Laccase–catalyzed decolorization of the synthetic azo–dye diamond black PV 200 and of some structurally related derivatives. Biocatalysis and Biotransformation 22(5–6), 331–339        [ Links ]

Kim, Y., Cho, N., Eom, T. and Shin, W. (2002). Purification and characterization of a laccase from Cerrena unicolor and its reactivity in lignin degradation. Bulletin of the Korean Chemical Society 23(7), 985–989.         [ Links ]

Lei, L., Guohua, Z. Meifen, W., Yanzhu, L. and Rong, G. (2009). Electrochemical degradation of chlorobenzene on boron–doped diamond and platinum electrodes. Journal of Hazardous Materials 168(1), 179–186.         [ Links ]

Meghzili, B., Medjram, M., Zoubida, M. (2008). Tests of Coagulation – Flocculation by aluminium sulphate and polycations Al13 on raw aters of the station of treatment skikda (Algeria). European Journal of Scientific Research 23(2) 268–277.         [ Links ]

Meric, S., Kaptan, D. and Olmez, T. (2004). Color and COD removal from wastewater containing reactive black 5 using Fenton's oxidation process. Chemosphere 54(3), 435–441.         [ Links ]

Meriç, S., Selçuk, H. and Belgiorno, V. (2005). Acute toxicity removal in textile finishing wastewater by fenton's oxidation, azone and coagulation–floculation processes. Water Research 39(6), 1147–1153.         [ Links ]

Michaud, P., Panizza, M., Ouattara, L., Diaco, T., Foti, G. and Comninellis, Ch. (2003). Electrochemical oxidation of water on synthetic boron–doped diamond thin film anodes. Journal of Applied Electrochemistry 33(2), 151–154.         [ Links ]

Nava, J. Núñez, F. and Gonzáles, I. (2007). Electrochemical incineration of p–cresol and o–cresol in the filter–press–type FM01–LC electrochemical cell using BDD electrodes in sulfate media at pH 0. Electrochimica Acta 52(9), 3229–3235.         [ Links ]

Nyanhongo, G., Gomes, J., Gübitz, G., Zvauya R., Read, J. and Steiner, W. (2002). Decolorization of textile dyes by laccases from a newly isolated strain of Trametes modesta. Water Research 36(6), 1449–1456.         [ Links ]

Panreac. (2006). Ficha 162645 de Datos de Seguridad Acido 2–Aminobenzoico, 99% (Acido Antranílico) PS, Según Reglamento (CE) 1907, España.         [ Links ]

Pereira, E. and Durran, L. (2001), Decolorization of azo dyes by Phanerochaete chrysosporium and Pleurotus sajorcaju, Enzyme and Microbial Technology 29, 473–477.         [ Links ]

Rodríguez, C. (2007). Laccase from Trametes hirsuta grown on paper cuttings: application to synthetic dye decolorization at different pH values, Engineering in Life Sciences 7(3), 229–234.         [ Links ]

Scialdone, O., Galia, A. and Filardo, G. (2008). Electrochemical incineration of 1,2–dichloroethane: Effect of the electrode material. Electrochimica Acta 53(24), 7220–7225.         [ Links ]

Sharp, E., Parson, S. and Jefferson, B. (2006). The impact of seasonal variation in DOC arising from a moorland peat catchment on coagulation with iron and aluminium salts. Environmental Pollution 140(3), 436–443.         [ Links ]

Snoeyink, V and Jenkins, D. (1987). Química del agua. Limusa, 1st edition, México, 242–243.         [ Links ]

Solis–Oba, M, Bárzana, E., García–Garibay, M, Viniegra–Gonzalez, G. (2007). The ABTS an oxidant agent of different chemical compounds and its recycling process between laccase and sustrate. Revista Mexicana de Ingeniería Química 6(3), 275–281.         [ Links ]

Spellstone (2004). The Chemistry of Indigo. Indigo Page. 1–2        [ Links ]

Sponza, D. (2006). Toxicity studies in a chemical dye production industry in Turkey. Journal of Hazardous Materials 138(3). 438–447.         [ Links ]

Ünyayar, A., Mazmanci, M., Erkurt, E., Atacag, H. and A. Gizir, M. Decolorization kinetics of the azo dye drimaren blue X3LR by laccase (2005). Reaction Kinetics and Catalysis Letters 86(1), 99–107.         [ Links ]

Walsh, F. and Robinson, D. (1998). Electrochemical filter–press reactorslity. Electrochemical Society Interface 7(2), 40–45.         [ Links ]

Xu, H., Heinze, T., Chen, S.,Cerniglia, C. and Chen, H. (2007). Anaerobic Metabolism of 1–Amino–2–Naphthol–Based Azo Dyes (Sudan Dyes) by Human Intestinal Microflora. Applied Environmental Microbiology 73(23), 7759–7762.         [ Links ]

Yogendra, V. (2008). Toxicity evaluation of effluents from dye and dye intermediate producing industries using Daphnia bioassay. The Internet Journal of Toxicology 4(2).         [ Links ]

Zhi, J., Wang, H., Nakashima, T., Rao, T. and Fujishima, A. (2003). Electrochemical incineration of organic pollutants on Boron–Doped Diamond electrode. Evidence for direct electrochemical oxidation pathway. Journal of Physical Chemistry B. 107(48),13389–13395.         [ Links ]

Zille, A., Ramalho, P., Tzanko, T., Millward, R., Aires, V., Cardoso, M., Ramalho, M., Gubitz, G. and Cavaco–Paulo, A. (2004). Biotechnology Progress 20, 1588–1592.         [ Links ]

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons