SciELO - Scientific Electronic Library Online

 
vol.8 número3Modelado de la biodegradación en biorreactores de lodos de hidrocarburos totales del petróleo intemperizados en suelos y sedimentosOptimización estadística de fermentación etanólica de Saccharomyces cerevisiae en presencia de zeolita Valfor® NaA índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de ingeniería química

versión impresa ISSN 1665-2738

Rev. Mex. Ing. Quím vol.8 no.3 Ciudad de México dic. 2009

 

Biotecnología

 

Crecimiento, sobrevivencia y adaptación de Bifidobacterium infantis a condiciones ácidas

 

Growth, survival and adaptation of Bifidobacterium infantis to acidic conditions

 

L. Mayorga–Reyes1, P. Bustamante–Camilo2, A. Gutiérrez–Nava3, E. Barranco–Florido1 y A. Azaola–Espinosa1*

 

1 Universidad Autónoma Metropolitana, Depto. Sistemas Biológicos. Calz. del Hueso 1100, Coyoacán 04960, México D.F. * Autor para la correspondencia. E–mail: azaola@correo.xoc.uam.mx Tel. 5483 7377, Fax 5483 7237.

2 Programa de Doctorado en Ciencias Biológicas, Universidad Autónoma Metropolitana.

3 Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca–Tulancingo, Km 4.5. Mineral de la Reforma Hidalgo.

 

Recibido 13 de Octubre 2009
Aceptado 17 de Noviembre 2009

 

Resumen

La acidez es una condición ambiental comúnmente encontrada por las bacterias presentes en productos lácteos fermentados y el tracto gastrointestinal. En este estudio, las células de Bifidobacterium infantis de 24 h de fermentación se inocularon en medios de cultivo con pH iniciales de 7.0, 4.0, 3.0 y 2.0 durante 24 h. Conforme el pH inicial disminuye, la población celular activa disminuyó hasta tres órdenes de magnitud. A pH 4.0 las células se mostraron estables durante las primeras 5 h de fermentación. Además, las células adaptadas a pH ácidos fueron más pequeñas a diferencia de la cepa original. Las cepas adaptadas a pH ácido mostraron un nivel de expresión reducida de dos proteínas de membrana de aproximadamente 18 a 20 kDa.

Palabras clave: Bifidobacterium, resistencia ácida, probioticos.

 

Abstract

Acidity is an environmental condition commonly encountered by bacteria in the gastrointestinal tract and fermented foods. In the present study, Bifidobacterium infantis cells were inoculated in culture media with initial pH of 7.0, 4.0, 3.0 and 2.0 respectively for 24 h. As the initial pH decreases, the active cell population decreased to three orders of magnitude. At pH 4.0 the cells were maintained stable during the first 5 h of fermentation. In addition, cells adapted to low pH were smaller than the original strain. The acid pH–adapted strains showed low expression levels of two membrane proteins of approximately 18 to 20 kDa.

Keywords: Bifidobacterium, acid resistance, probiotic.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Referencias

Ami, D., Natalello, A., Schultz , T., Gatti–Lafranconi, P., Lotti, M., Doglia, S.M. y de Marco, A. (2009). Effects of recombinant protein misfolding and aggregation on bacterial membranes. Biochimica et Biophysica Acta 1794, 263–269        [ Links ]

Berrada, N., Lemeland, J., Laroche, G., Thouvenot, P. y Piaia, M. (1991). Bifidobacterium from fermented milks: survival during gastric transit. Journal of Dairy Science 74, 409–413.         [ Links ]

Bezkorovainy, A. (2001). Probiotics: determinants of survival and growth in the gut. American Journal of Clinical Nutrition 73, 399S–405S.         [ Links ]

Booth, I.R. (1985). Regulation of cytoplasmic pH in bacteria. Microbiology and Molecular Biology Reviews 49, 359–378.         [ Links ]

Charteris, W.P., Kelly, P.M., Morell, L. y Collins, J.K. (1998). Development and application of an in vitro methodology to determine the transit tolerance of potentially probiotic Lactobacillus and Bifidobacterium species in the upper human gastrointestinal tract. Journal of Applied Microbiology 84, 759–768.         [ Links ]

Collado, C.M., y Sanz, Y. (2007). Induction of acid resistance in Bifidobacterium: a mechanism for improving desirable trits of potentially probiotic strains. Journal of Applied Microbiology 103, 1147–1157.         [ Links ]

Cotter, P.D. y Hill, C. (2003). Surviving the acid test: responses of Gram–positive bacteria to low pH. Microbiology and Molecular Biology Reviews 67, 429–453.         [ Links ]

Foster, J.W. (1991). Salmonella acid shock proteins are required for the adaptive acid tolerance response. The Journal of Bacteriology 173, 6896–6902.         [ Links ]

Fozo, E.M. y Quivey, R.G. (2004). Shifts in the membrane fatty acid profile of Streptococcus mutants enhance survival in acidic environments. Applied and Environmental Microbiology 70, 929–936.         [ Links ]

Lee, J., Roseman, A., Saibil, R., y Vierling, E. (1997). A small heat shock protein stably binds heat denatured model substrates and can maintain a substrate in a folding competent state. The EMBO Journal 16, 659–671.         [ Links ]

Lesley, A. S, Graziano, J., Cho, Y., Knuth, W.M. y Klock, E.H. (2002). Gene expression response to misfolded protein as a screen for soluble recombinant protein. Protein Engineering 15, 153 –160.         [ Links ]

Margolles, A., García, L., Sanchez, B., Gueimonde, M. y de los Reyes Gavilán, C. (2003). Characterisation of a Bifidobacterium strain with acquired resistance to cholate – A preliminary study. International Journal of Food Microbiology 82, 191–198.         [ Links ]

Marteau, P., Minekus, M., Havenaar, R. y Huis in't Veld J.H. (1997). Survival of lactic acid bacteria in a dynamic model of the stomach and small intestine: validation and the effects of bile. Journal of Dairy Science 80, 1031–1037.         [ Links ]

Matzumoto, M., Ohishi, H. y Benno, Y. (2004). H–ATPase activity in Bifidobacterium with special reference to acid tolerance. International Journal of Food Microbiology 93, 109–113.         [ Links ]

Del Piano, M., Morelli, M., Strozzi, G.P., Allesina, S., Barba, M., Deidda, F., Lorenzini, P., Ballará, M., Montino, F., Orsello, M., Sartori, M., Garello, E., Carmagnola, S., Pagliarulo, M. y Capurso, L. (2006). Probiotics: from research to consumer. Digestive and Liver Disease 38, s248–s255.         [ Links ]

Pluger, K., Bartola, I., Velásquez, F., y Lorenzo V. (2007). Non–disruptive release of Pseudomonas putida proteins by in situ electric breackdown of intact cells. Journal of Microbiological Methods 71,179–185.         [ Links ]

Pochart, P., Marteau, P., Bouhnik, Y., Goderel, I., Bourlioux, P. y Rambaud, J.C. (1992). Survival of bifidobacteria ingested via fermented milk during their passage through the human small intestine: an in vivo study using intestinal perfusion. American Journal of Clinical Nutrition 55, 78–80.         [ Links ]

Raja, N., Goodson, M., Chui, W.C.M., Smith, D.G. y Rowbury, R. J. (1991). Habituation to acid in Escherichia coli: conditions for habituation and its effects on plasmid transfer. Journal of Applied Bacteriology 70, 59–65.         [ Links ]

Roy, D. (2005). Technological aspects related to the use of bifidobacteria in dairy foods. Lait 85, 39–56.         [ Links ]

Saarela, M., Rantala, M., Hallamaa, K., Nohynek, L., Virkajarvi, I. y Matto, J. (2004). Stationary–phase acid and heat treaments for improvement of the viability of probiotic lactobacilli and bifidobacteria. Journal of Applied Microbiology 96, 1205–1214.         [ Links ]

Sánchez, B., Champomier–Verge, M.C., Collado, M., Anglade, P., Baraige, B., Sanz, Y., Reyes–Gavilán, C., Margolles, A. y Zagoreci, M. (2007). Low pH adaptation and the acid tolerance response of Bifidobacterium longum biotipe longum. Applied and Environmental Microbiology 73, 6450–6459.         [ Links ]

Sanz, Y. (2007). Ecological and functional implications of the acid–adaptation ability of Bifidobacterium: A way of selecting improved probiotic strains. International Dairy Journal 17, 1284–1289.         [ Links ]

Schmidt, G. y Zink, R. (2000). Basic features of the stress response in three species of bifidobacteria: B. longum, B. adolecentis, and B. breve. International Journal of Food Microbiology 55, 41–45.         [ Links ]

Takahashi, N., Xiao, J., Miyaji, K., Yaeshiima, T., Hiramatsu, A., Iwatsuki, K., Kokubo, S. y Hosono, A. (2004). Selection of an acid tolerant bifidobacteria and evidence for a low–pH–inducible acid tolerance response in Bifidobacterium longum. Journal Dairy Research 71, 340–345.         [ Links ]

Ventura, M., Canchaya, C., Zhang, Z., Fitzgerald, F. G. y van Sinderen, D. (2007). Molecular characterization of hsp20, encoding a small heat shock protein of Bifidobacterium breve UCC2003. Applied and Environmental Microbiology 73, 4695–4703.         [ Links ]

Ventura, M., Canchaya, C., Zhang, Z., Vernini, V., Fitzgerald, F. y van Sideren, D. (2006). How high G+C Gram positive bacteria and in particular bifidobacteria cope with heat stress: protein players and regulators. FEMS Microbiology Reviews 30, 734–759.         [ Links ]

Ventura, M., Keny, G. J., Zhang, Z., Fitzgerald, F. y van Sinderen, D. (2005). The clpB gene of Bifidobacterium breve UCC 2003: transcriptional analysis and first insights into stress induction. Microbiology 151, 2861–2872.         [ Links ]

Wickner, S., Maurizi, M. R. y Gottesman, S. (1999). Posttranslational quality control: folding, refolding, and degrading proteins. Science 286, 1888–1893.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons