SciELO - Scientific Electronic Library Online

 
vol.8 número3Desarrollo y aplicación de las ecuaciones de Stefan-MaxwellCrecimiento, sobrevivencia y adaptación de Bifidobacterium infantis a condiciones ácidas índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Revista mexicana de ingeniería química

versión impresa ISSN 1665-2738

Rev. Mex. Ing. Quím vol.8 no.3 México dic. 2009

 

Biotecnología

 

Modelado de la biodegradación en biorreactores de lodos de hidrocarburos totales del petróleo intemperizados en suelos y sedimentos

 

Biodegradation modeling of sludge bioreactores of total petroleum hydrocarbons weathering in soil and sediments

 

S.A. Medina–Moreno1*; S. Huerta–Ochoa2; C.A. Lucho–Constantino1; L. Aguilera–Vázquez1; A. Jiménez–González3 y M. Gutiérrez–Rojas2

 

1 Departamento de Biotecnología, Universidad Politécnica de Pachuca. Ex–Hacienda de Santa Bárbara, Mpio. Zempoala, Hgo., C.P. 43830, Carretera Pachuca Cd. Sahagún Km. 20. * Autor para la correspondencia. E–mail: samm67@upp.edu.mx

2 Departamento de Biotecnología, Universidad Autónoma Metropolitana. C.P. 09340 lztapalapa, México D.F., México.

3 Departamento de lngeniería en Agrotecnología, Universidad Politécnica de Francisco l. Madero. Carretera Tepatepec–San Juan Tepa, Km. 2, Hgo., C.P.42660

 

Recibido 14 de Abril 2009
Aceptado 20 de Octubre 2009

 

Resumen

En este trabajo se desarrolló y validó un modelo matemático de difusión–sorción–biodegradación para predecir y describir la biodegradación en un biorreactor de lodos de hidrocarburos totales de petróleo (HTPs) intemperizados en suelos y sedimentos. El principal aporte del modelo fue considerar un fenómeno de histéresis en los poros de las partículas de suelo, donde la trayectoria inicial de equilibrio fue descrita mediante una isoterma lineal, mientras que la trayectoria de un segundo equilibrio durante la difusión intrapartícula de los hidrocarburos fue descrita por una isoterma de Langmuir. Esta consideración, explica el fenómeno de difusión retardada por re–adsorción. Además, la adimensionalización del modelo generó cuatro números adimensionales: biodisponibilidad tipo I (BnI) y tipo II (BnII), Biot de masa (Bim) y el módulo de re–adsorción (η); los cuales permitieron establecer los mecanismos de control en el proceso de biodegradación. La validación del modelo, se llevó a cabo al ser utilizado para describir y predecir la biodegradación de HTPs intemperizados en un suelo con 150,000 mg HTPs/kg y este mismo suelo pre–tratando con tolueno. El modelo puede utilizarse como plataforma para el desarrollo de criterios de escalamiento y diseño de biorreactores de lodos.

Palabras clave: modelo difusión–sorción–biodegradación, biorreactor de lodos, hidrocarburos totales de petróleo, biodegradación.

 

Abstract

A mathematical model to predict and to describe the biodegradation in sludge bioreactor of total petroleum hydrocarbons (TPHs) weathering in soil–sediments was developed and validated. The main model contribution, consisted on taking into account a hysteresis phenomena inside of the particles soil, where the initial desorption and solubilization equilibrium path of TPHs (linear isotherm) was considered to be different at the second readsorption equilibrium path (Langmuir isotherm) during intraparticle diffusivity of hydrocarbons. The Langmuir isotherm consideration, allowed explaining the retarded diffusion due to readsorption equilibrium. Model dimensionless also generate four non–dimensional numbers: bioavailability I (BnI) and II (BnII), Biot of mass (Bim) and readsorption module (η) that allowed establishing the control mechanism of the biodegradation process. The model validation was carried out by their use to describe and to predict the biodegradation of weathering TPHs in a soil with 150,000 mg/kg of contamination level. The model was also capable to describe the biodegradation of weathering TPHs from the same soil, previously treated with toluene. The model could be used as platform to develop scale–up approaches, and to improve the sludge bioreactors performance.

Keywords: diffusion–sorption–biodegradation model, sludge bioreactor, weathering total petroleum hydrocarbons, biodegradation.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Referencias

Bosma, T. N. P; Middeldorp, P.J.M; Schraa, G; Zehnder, A.J. 1997. Mass transfer limitation of biotransformation: Quantifying bioavailability. Environmental Science and Technology 31, 248–252.         [ Links ]

Chung, G.Y; McCoy, B.J; Scow, K.M. 1993. Criteria to asses when biodegradation is kinetically limited by intraparticle diffusion and sorption. Biotechnology and Bioengineering 41, 625–632.         [ Links ]

Dhawan, S; Fan, L.T; Erickson, L.E; Tuitemwong, P. 1991. Modeling, analysis, and simulation of bioremediation of soil aggregates. Environmental Progress 10, 251–260.         [ Links ]

Egli, T; Lendenmann, U; Snozzi, M. 1993. Kinetics of microbial growth with mixtures of carbon sources. Antoine van Leeuwenhoek 63, 289–298.         [ Links ]

Fava, F; Di Gioia, D. 1998. Effects of triton x–100 and quillaya saponin on the ex–situ bioremediation of a chronically polychlorobiphenyl–contaminated soil. Applied Microbiology and Biotechnology 50, 623–630.         [ Links ]

Fu, C; Pfanstiel, S; Gao, C; Yan, X; Goving, R. 1996. Studies on contaminant biodegradation in slurry, wafer, and compacted soil tube reactors. Environmental Science and Technology 30, 743–750.         [ Links ]

García–Rivero, M; Peralta–Pérez, M.R. 2008. Cometabolismo en la biodegradación de hidrocarburos. Revista Mexicana de Ingeniería Química 7, 1–12.         [ Links ]

García–Rivero, M., Saucedo–Castañeda, G., Flores De Hoyos, S., Gutierrez–Rojas, M. 2002. Mass transfer and hydrocarbon biodegradation of aged soil in slurry phase. Biotechnology Progress 18, 728–733.         [ Links ]

Geankoplis, C.J. 1999. Procesos de transporte y operaciones unitarias. C.E.C.S.A. México, D.F.         [ Links ]

Geerdink, M.J., Van Loosdrecht, M.C.M., Luyben, K.CH. 1996. Model for microbial degradation of nonpolar organic contaminants in a soil slurry reactor. Environmental Science and Technology 30, 779–786.         [ Links ]

González–Brambila, M; López–Isunza, F. 2007. Transporte de masa y reacción en una biopelícula. Revista Mexicana de Ingeniería Química 6, 127–136.         [ Links ]

Himmelblau, D.M; Bischoff, K. 1992. Análisis y simulación de procesos. Reverte. Barcelona.         [ Links ]

Hoffman, J. 1992. Numerical methods for Engineers and Scientists. McGraw–Hill. New York.         [ Links ]

Hudak, A.J; Cassidy, D.P. 2004. Stimulating in–soil rhamnolipid production in a bioslurry reactor by limiting nitrogen. Biotechnology and Bioengineering 88, 861–868.         [ Links ]

Jimenez, I.Y; Bartha, R. 1996. Solvent–augmented mineralization of pyrene by a Mycobacterium sp. Applied Environmental Microbiology 62, 2311–2316.         [ Links ]

Lianga, Y; Zhanga, X; Daib, D; and Li, G. 2009. Porous biocarrier–enhanced biodegradation of crude oil contaminated soil. International Biodeterioration & Biodegradation 63, 80–87.         [ Links ]

Lorch, H.J; Benckieser, G; Ottow, J.C.G. 1995. Basic methods for counting microorganisms in soil and water. In Alef and Nannipieri (Ed) Methods in Applied Soil Microbiology and Biochemistry. Academic Press. Great Britain.         [ Links ]

Machin–Ramírez, C; Okoh, A.I; Morales, D; Mayolo–Deloisa, R; Quintero, R; Trejo–Hernández, M.R. 2007. Slurry phase biodegradation of weathered oily sludge waste. Chemosphere 70, 737–744.         [ Links ]

Medina–Moreno, S.A. 2006. Estudio y modelamiento matemático de la biodegradación de hidrocarburos en biorreactores heterogéneos. Tesis Doctorado Biotecnología (UAM–Iztapalapa). México, D.F.         [ Links ]

Medina–Moreno, S.A; Huerta–Ochoa, S; Gutiérrez–Rojas, M. 2005. Hydrocarbon biodegradation in oxygen–limited sequential batch reactors by consortium from weathered, oil–contaminated soil. Canadian Journal of Microbiology 51, 231–239.         [ Links ]

Mulder, H; Breure, A.M; Rulkens, W.H. 2001. Prediction of complete bioremediation periods for PAH soil pollutants in different physical states by mechanistic models. Chemosphere 43, 1085–1094.         [ Links ]

Peralta, P.M.R. 2001. obtención y caracterización de un soporte sólido modelo para el estudio del metabolismo de hongos filamentosos degradadores de fenantreno. Tesis Doctorado Biotecnología (UAM–Iztapalapa). México, D.F.         [ Links ]

Poggi–Varaldo, H.M; Rinderknecht–Seijas, N. 2003. A differential availibility enhancement factor fot the evaluation of pollutants availability in soil treatments. Acta Biotechnology 23, 271–280.         [ Links ]

Ramaswami, A; Luthy, R. G. 1997. Mass transfer and bioavailability of PAH compounds in coal tar NAPL–slurry systems. 1. Model development. Environmental Science and Technology 31, 2260–2267.         [ Links ]

Rattan, K; Shanker, R; Khanna, P; Atkins, W.M. 1999. Stress survival of a genetically engineered Pseudomonas in soil slurries: cytochrome P–450cam–catalyzed dehalogenation of chlorinated hydrocarbons. Biotechnology Progress 15, 958–962.         [ Links ]

Robles–González, I.V; Fava, F; Poggi–Varaldo, H.M. 2008. A review on slurry bioreactors for bioremediation of soils and sediments. 2008. Microbial Cell Factories 7, 5.         [ Links ]

Schuring, D; Koriabkina, A.O; Jong, A.M; Smit, B; Santen, R.A. 2001. Adsorption and Diffusion of n–Hexane/2–Methylpentane mixtures in zeolite silicalite: Experiments and modeling. Journal of Physical Chemistry 105, 7690–7698.         [ Links ]

Strouda, J.L; Patonb, G.I; Semplea, K.T. 2009. The effect of agitation on the biodegradation of hydrocarbon contaminants in soil slurries. Chemosphere 77, 123–128.         [ Links ]

Van Brakel; Heertjes, P.M. 1974. Analysis of diffusion in macroporous media in terms of a porosity, a tortuosity and a constrictivity factor. International Journal of Heat and Mass Transfer 17, 1093–1103.         [ Links ]

Villemur, R; Déziel, E; Benachenhou, A; Marcoux, J; Gauthier, E; Lépine, F; Beaudet, R; Comeau, Y. 2000. Two–liquid phase slurry bioreactors to enhance the degradation of high–molecular–weight polycyclic aromatic hydrocarbons in soil. Biotechology Progress 16, 966–972.         [ Links ]