SciELO - Scientific Electronic Library Online

 
vol.8 issue2Numerical study of natural convection in a 2-D square cavity with fluid-porous medium interface and heat generationEffect of chemical modification type on physicochemical and rheological characteristics of banana starch author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Revista mexicana de ingeniería química

Print version ISSN 1665-2738

Rev. Mex. Ing. Quím vol.8 n.2 Ciudad de México Aug. 2009

 

Ingeniería de alimentos

 

Interrelationship between the structural features and rehydration properties of spray dried manzano chilli sauce microcapsules

 

Interrelación entre las características estructurales y las propiedades de rehidratación de microcápsulas de salsa de chile manzano obtenidas mediante secado por aspersión

 

C. Pérez–Alonso1*, M. F. Fabela–Morón1, A. Y. Guadarrama–Lezama1, J. F. Barrera–Pichardo1, L. Alamilla–Beltrán2 and M.E. Rodríguez–Huezo3

 

1 Facultad de Química, Universidad Autónoma del Estado de México, Paseo Tollocan esq. Paseo Colón s/n, CP 50120 Toluca, Estado de México, México. * Corresponding author. E–mail: cpereza@uaemex.mx Tel. (+52)7222173890 Fax (+52)7222175109

2 Departamento de Graduados e Investigación en Alimentos, ENCB–IPN, Carpio y Plan de Ayala s/n, CP 11340 México, D.F., México.

3 División de Ingeniería Química y Bioquímica, Tecnológico de Estudios Superiores de Ecatepec, Av. Tecnológico s/n, CP 55210 Ecatepec, Estado de México, México.

 

Received 2 of December 2008
Accepted 10 of June 2009

 

Abstract

Manzano chilli sauce microcapsules (MCHS) were obtained by spray drying using Gum Arabic (GA100%), whey protein concentrate (WPC100%) and a blend of these biopolymers (GA50%–WPC50%) as wall materials in 2:1 and 4:1 wall to core material ratios (WCMR). Water vapor adsorption isotherms data of microcapsules were obtained at 35 °C and fitted to GAB's model. The monolayer water content values of the microcapsules varied from 9.97 to 14.32 kg H2O/100 kg dry solids, and were used for determining the surface fractal dimension (Ds). Ds values ranged between 2.04 to 2.30 for the 2:1 WCMR and 2.17 to 2.43 for the 4:1 WCMR, respectively. Microcapsules topology was determined by Scanning Electronic Microscopy (SEM). Microcapsules with WPC100% exhibited smoother and more regular shaped topology than those with GA100% which tended to exhibit surface flaws and dents, while those made with the biopolymers blend exhibited an intermediate morphology. Rehydration times of the microcapsules were function of water activity (aw) and WCMR. The higher the WCMR, the higher the rehydration time required.

Keywords: fractal dimension surface, sorption isotherms, water activity, microencapsulation, topology, structural features.

 

Resumen

Se obtuvieron microcápsulas de salsa de chile manzano (MCHS) mediante secado por aspersión usando como agentes encapsulantes, goma Arábiga (GA100%), concentrado de proteína de suero de leche (WPC100%) y una mezcla de ambos biopolímeros (GA50%–WPC50%), con relaciones de material de pared a material encapsulado (WCMR) de 2:1 y 4:1. Se obtuvieron isotermas de adsorción de las microcápsulas a 35 °C, las cuales se ajustaron al modelo de GAB. El contenido de humedad en la monocapa de las microcápsulas varió entre 9.97 y 14.32 kg H2O/100 kg s.s., y estos valores se utilizaron para determinar la dimensión superficial fractal (Ds). Los valores de Ds se encontraron entre 2.04 a 2.30 para la WCMR 2:1 y de 2.17 a 2.43 para la WCMR 4:1. La topología de las microcápsulas se determinó por microscopía electrónica de barrido (SEM). Las microcápsulas con WPC100% presentaron superficies suaves y regulares, con GA100% defectos superficiales caracterizadas por pliegues poco tersos, y la mezcla GA50%–WPC50% una morfología intermedia en comparación con los biopolímeros puros. Los tiempos de rehidratación de las microcápsulas fueron función de WCMR y de la actividad de agua (aw). A mayor WCMR, mayor fue el tiempo de rehidratación requerido.

Palabras clave: dimensión superficial fractal, isotermas de adsorción, actividad de agua, microencapsulación, secado por aspersión.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Acknowledgments

The authors wish to thank the financing of this research to the Universidad Autónoma del Estado de México through grant 2398/2006 and PROMEP/103.5/05/1696 to finance this work.

 

References

Aguerre, R. J., Suárez, C. and Viollaz, P. E. (1989). New BET type multilayer sorption isotherms. Part II: Modelling water sorption in foods. Lebensmittel–Wissenschaft und Technologie 22, 192–195.         [ Links ]

Ayranci, E., Ayranci, G. and Dogantan, Z. (1990). Moisture sorption isotherms of dried apricot, fig and raisin at 20 °C and 35 °C. Journal of Food Science 55(6), 1591–1593.         [ Links ]

Alamilla–Beltrán, L., Chanona–Pérez, J. J., Jiménez–Aparicio, A. R. and Gutiérrez–López, G. F. (2005). Description of morphological changes of particles along spray drying. Journal of Food Engineering 67, 179–184.         [ Links ]

Beristain, C. I., García, H. S and Vernon–Carter, E. J. (2001) . Spray–dried encapsulation of cardamom (Elettaria cardamomum) essential oil with mesquite (Prosopis julflora) gum. Lebensmittel–Wissenschaft und Technologie 34, 398–401.         [ Links ]

Beristain, C.I. and Vernon–Carter, E.J. (1994). Utilization of mesquite (Prosopis juliflora) gum as emulsion stabilizing agent for spray–dried encapsulated orange peel oil. Drying Technology 12, 1727–1733.         [ Links ]

Beristain, C. I., Azuara, E. and Vernon–Carter E. J. (2002) . Effect of water activity on the stability to oxidation of spray–dried encapsulated orange peel oil using mesquite gum (Prosopis juliflora) as wall material. Journal of Food Science 67, 206–211.         [ Links ]

Buffo, R.A., Probst, K., Zehentbauer, G., Luo, Z. and Reineccius, G.A. (2002). Effect of aglomeration on the properties of spray dried encapsulates flavors. Flavors and Fragance Journal 17, 292-299.         [ Links ]

Domínguez–Domínguez, S., Domínguez–López, A., González–Huerta, A. and Navarro–Galindo, S. (2007). Cinética de imbibición e isotermas de adsorción de humedad de la semilla de Jamaica (Hibiscus sadariffa L.). Revista Mexicana de Ingeniería Química 6, 309–316.         [ Links ]

Doulia, D., Tiza, K. and Gekas, V. (2000). A knowledge base for the apparent mass diffusion coefficient (Deff) of foods. International Journal of Food Properties 3(1), 1–14.         [ Links ]

Eshbaugh, W. H. (1979). Biosystematic and evolutionary study of the Capsicum pubescens complex. In: Research Report 1970 Projects, National Geographic Society, S.143–162, Washington, USA.         [ Links ]

Gabas, A.L., Telis, V.R.N., Sobral, P.J.A. and Telis–Romero, J. (2007). Effect of maltodextrin and Arabic gum in water vapor sorption thermodynamic properties of vacuum dried pineapple pulp powder. Journal of Food Engineering 82, 246–252.         [ Links ]

Gharsallaoui, A., Roudaut, G., Chambón, O., Voilley, A. and Saurel, R. (2007). Applications of spray–drying in microencapsulation of food ingredients: An overview. Food Research International 40, 1107–1121.         [ Links ]

Hogan, S.A., McNamee, B.F., O'Riordan, E.D. and O'Sullivan, M. (2001). Microencapsulating properties of whey protein concentrate. Journal of Food Science 66, 675–680.         [ Links ]

Iglesias, H.A. and Chirife, J. (1982). Handbook of food isotherms. Academic Press. New York, USA.         [ Links ]

Jafari, S. M., He, Y. and Bhandari, B. (2007). Encapsulation of nanoparticles of d–limonene by spray drying: Role of emulsifiers and emulsifying techniques. Drying Technology 25, 1069–1079.         [ Links ]

Kerdpiboon, S. and Devahastin, S. (2007). Fractal characterization of some physical properties of a food product under various drying conditions. Drying Technology 25, 135–146.         [ Links ]

Kim, Y. D., Morr, C. V. and Schenz, T. W. (1996). Microencapsulation properties of gum arabic and several food proteins; spray–dried orange oil emulsion particles. Journal of Agricultural and Food Chemistry 44, 1314–1320.         [ Links ]

Krishnan, S., Bhosale, R. and Singhal, R. S. (2005a). Microencapsulation of cardamom oleorresin: Evaluation of blends of gum arabic, maltrodextrin and modified starch as wall materials. Carbohydrate Polymers 61, 95–102.         [ Links ]

Krishnan, S., Kshirsagar, A.C. and Singhal, R. S. (2005b). The use of gum arabic and modified starch in the microencapsulation of a food flavoring agent. Carbohydrate Polymers 62, 309–315.         [ Links ]

Koberstein–Hadja, A. and Dickinson, E. (1996). Stability of water in oil in water emulsions containing faba bean proteins. Food Hydrocolloids 10, 251–254.         [ Links ]

Labuza, T. P., Kaanane, A. and Chen, J. Y. (1985). Effect of temperature on the moisture sorption isotherms and water activity shift of two dehydrated foods. Journal of Food Science 50, 385–391.         [ Links ]

Lang, K. W., McCune, T.D. and Steinberg, M.P. (1981). A proximity equilibration cell for rapid determination isotherms. Journal of Food Science 46, 936–938.         [ Links ]

Lomauro, G. J., Bakshi, A. S. and Labuza, T. P. (1985). Evaluation of food moisture sorption isotherms equations. Part I: Fruit, vegetables and meat products. Lebensmittel– Wissenschaft und Technologie 18, 111–117.         [ Links ]

Long–Solís, J. (1998). Capsicum y cultura: la historia del chile (2nd Ed.). Fondo de Cultura Económica, México, D.F.         [ Links ]

Madene, A., Jacquot, M., Scher, J. and Desobry, S. (2006) . Flavour encapsulation and controlled release – a review. International Journal of Food Science and Technology 41 , 1–21.         [ Links ]

Martinelli, L., Gabas, A.L., and Telis–Romero, J. (2007) . Thermodynamic and quality properties of lemon juice powder as affected by maltodextrin and gum Arabic. Drying Technology 25, 1–21.         [ Links ]

McLaughlin, C.P. and Magee, T.R.A. (1998). The determination of sorption isotherm and the isosteric heats of sorption for potatoes. Journal of Food Engineering 35, 267–280.         [ Links ]

McNamee, B. F., O'Riordan, E. D. and O'Sullivan, M. (1998). Emulsification and microencapsulation properties of gum Arabic. Journal of Agricultural and Food Chemistry 46, 4551–4555.         [ Links ]

Morr, C.V. and Ha, E. (1993). Whey protein concentrates and insolates: processing and functional properties. Critical Reviews in Food Science Nutrition 33(6), 431–476.         [ Links ]

Moreau, D.L. and Rosenberg, M. (1998). Porosity of whey protein–based microcapsules containing anhydrous milkfat measured by gas displacement pycnometry. Journal of Food Science 63, 819–823.         [ Links ]

Park, S. J., Shin, Y. S. and Lee, J. R. (2001). Preparation and characterization of microcapsules containing lemon oil. Journal of Colloid and Interface Science 241 , 502–508.         [ Links ]

Pérez–Alonso, C., Beristain, C. I., Lobato–Calleros, C., Rodríguez–Huezo, M. E. and Vernon–Carter, E. J. (2006). Thermodynamic analysis of the sorption isotherms of pure and blended carbohydrate polymers. Journal of Food Engineering 77, 753–760.         [ Links ]

Pfeifer, P. and Cole, M.W. (1990). Fractals in surface science: scattering and thermodynamics of adsorbed films II. New Journal Chemistry 14 (33), 221–232.         [ Links ]

Pfeifer, P. (1991). Structure analysis of porous solids from presorbed films. Langmuir 7, 2833–2835.         [ Links ]

Rodríguez–Huezo, M.E., Pedroza–Islas, R., Prado–Barragán, L.A., Beristain, C.I. and Vernon–Carter, E.J. (2004). Microencapsulation by spray drying of multiple emulsions containing carotenoids. Journal of Food Science 64 (7), E351–E359.         [ Links ]

Quevedo, R., López, G. R. Aguilera, J.M. and Cadoche, L. (2002). Description of food surfaces and microestructural changes using fractal image texture analysis. Journal of Food Engineering 53, 361–371.         [ Links ]

Ré, M.I. (1998). Microencapsulation by spray–drying. Drying Technology 16, 1195–1236.         [ Links ]

Ré, M.I. (2006). Formulating drug delivery systems by spray drying. Drying Technology 4, 433–446.         [ Links ]

Rizvi, S. S. H. (1986). Thermodynamic properties of foods in dehydration: Engineering properties of foods, (1st ed.). Marcel Dekker, Inc., USA.         [ Links ]

Shahidi, F. and Han, X. (1993). Encapsulation of food ingredients. Critical Reviews in Food Science Nutrition 33, 501–547.         [ Links ]

Shaikh, J., Bhosale, R. and Singhal, R. (2006). Microencapsulation of black pepper oleoresin. Food Chemistry 94, 105–110.         [ Links ]

Shu, B., Yu, W., Zhao, Y. and Liu X. (2006). Study on microencapsulation of lycopene by spray–drying. Journal of Food Engineering 76, 664 669.         [ Links ]

Tang, P., Chew, N.Y., Chan, H.K. and Raper, J.A (2003). Limitation of determination of surface fractal dimension using N2 adsorption isotherms and modified Frenkel–Halsey–Hill theory. Langmuir 19, 2632–2638.         [ Links ]

Watanabe, Y., Fang, X., Minemoto, Y., Adachi, S., & Matsuno, R. (2002). Suppressive effect of saturated L–ascorbate on the oxidation of linoleic acid encapsulated with maltodextrin or gum arabic by spray–drying. Journal of Agricultural and Food Chemistry 50, 3984–3987.         [ Links ]

Weisser, H. (1985). Influence of temperature on sorption equilibria. In: Properties of water in foods, (D. Simatos and J.L Multon, eds.), Pp. 95–118. Martinus Nijhoff Publishers. Dordrecht, Netherlands.         [ Links ]

Wu, Q. and Suchsland, O. (1996). Prediction of moisture content and moisture gradient of overlaid particleboard. Wood and Fiber Science 28(2), 227–239.         [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License