SciELO - Scientific Electronic Library Online

 
vol.8 número2Digestión anaerobia de lodo primario y secundario en dos reactores UASB en serieEstudio numérico de la convección natural en una cavidad cuadrada en 2-D con interfase fluido-medio poroso y generación de calor índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Revista mexicana de ingeniería química

versão impressa ISSN 1665-2738

Rev. Mex. Ing. Quím vol.8 no.2 México Ago. 2009

 

Biotecnología

 

Biodegradation of [bmim][PF6] using Fusarium sp

 

Biodegradación de [bmim][PF6] utilizando Fusarium sp

 

A. Esquivel–Viveros1, F. Ponce–Vargas1, P. Esponda–Aguilar1,2, L.A. Prado–Barragán1, M. Gutiérrez–Rojas1, G.J. Lye2 and S. Huerta–Ochoa1*

 

1 Departamento de Biotecnología, Universidad Autónoma Metropolitana–Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, 09340, México D.F., México. * Corresponding author. E-mail: sho@xanum.uam.mx Fax 55 58044712

2 The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, London, WC1E 7JE, United Kingdom

 

Received 12 of February 2009
Accepted 11 of June 2009

 

Abstract

The increased use of ionic liquids in industry has led to the study of their biodegradability and toxicity to prevent contamination of the environment by these synthetic compounds. A Fusarium strain was isolated and tested for its ability to tolerate and grow in the presence of [bmim] [PF6], a potential contaminant of wastewaters. The Fusarium strain was able to grow in both surface and submerged liquid media using [bmim] [PF6] as the sole carbon source up to 19 and 21 g [bmim] [PF6] L–1, respectively. A membrane–aerated biofilm reactor was used for biodegradation studies of synthetic wastewaters. Up to 80% biodegradation was observed after 28 days of incubation at 30 °C. This is the first time that [bmim][PF6] has been subjected to fungal biodegradation.

Keywords: ionic liquids, [bmim][PF6] biodegradation, Fusarium, membrane–aerated biofilm reactor.

 

Resumen

El uso creciente de líquidos iónicos en la industria conduce a estudios de bio–degradabilidad y toxicidad para prevenir la contaminación del medio ambiente por estos compuestos sintéticos. Se aisló una cepa de Fusarium y se probó su habilidad para tolerar y crecer en presencia de [bmim] [PF6], un contaminante potencial de aguas residuales. La cepa de Fusarium fue capaz de crecer tanto en cultivo superficial y sumergido utilizando [bmim] [PF6] como única fuente de carbono hasta 19 y 21 g [bmim] [PF6] L–1, respectivamente. Se utilizó un reactor de biopelícula de membrana aireada para los estudios de biodegradación de aguas residuales sintéticas. Se observó una biodegradación del 80% después de 28 días de incubación a 30 °C. Ésta es la primera vez que se estudia la biodegradación de [bmim][PF6] con hongos filamentosos.

Palabras clave: líquidos iónicos, biodegradación de [bmim][PF6], Fusarium, eactor de biopelícula de membrana aireada.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Acknowledgments

We are grateful to the National Council of Science and Technology of Mexico (Conacyt México) for its financial support of Project 2003–CO2–42694.

 

References

Aniruddha P., Mandal P.K. and Samanta A. (2005). How transparent are the imidazolium ionic liquids? A case study with 1–methyl–3–butylimidazolium hexafluorophosphate, [bmim][PF6]. Chemical Physics Letters 402, 375–379.         [ Links ]

Arriaga S., Moñoz R., Hernández S., Guieysse N. and Revah S. (2006). Gaseous hexane biodegradation by Fusarium solani in two liquid phase packed–bed and stirred–tank bioreactors. Environmental Science & Technology 40, 2390–2395.         [ Links ]

Chulalaksananukul S., Gadd G.M., Sangvanich P., Sihanonth P., Piapukiew J. and Vangnai A.S. (2006). Biodegradation of benzo(a)pyrene by a newly isolated Fusarium sp. FEMS Microbiology Letters 262, 99–106.         [ Links ]

Docherty K. M., Dixon J. K. and Kulpa C. F. (2007). Biodegradability of imidazolium and pyridinium ionic liquids by an activated sludge microbial community. Biodegradation 18, 481–493.         [ Links ]

Dumestre A., Chone T., Portal J.M., Gerard M. and Berthelin J. (1997). Cyanide degradation under alkaline conditions by a strain of Fusarium solani isolated from contaminated soils. Applied and Environmental Microbiology 63, 2729–2734.         [ Links ]

Fernández J.F., Waterkamp D. and Thöming J. (2008). Recovery of ionic liquid from wastewater: Aggregation control for intensified membrane filtration. Desalination 224, 52–56.         [ Links ]

Garcia M.T., Gathergood N. and Scammells P.J. (2005). Biodegradable ionic liquids. Part II. Effect of the anion and toxicology. Green Chemistry 7, 9–14.         [ Links ]

Gathergood N., Garcia M.T. and Scammells P.J. (2004). Biodegradable ionic liquids: Part I. Concept, preliminary targets and evaluation. Green Chemistry 6, 166–175.         [ Links ]

González–Brambila M. and López–Isunza F. (2007). Mass Transport and reaction in a biofilm. Revista Mexicana de Ingeniería Química 6, 127–136.         [ Links ]

Jastorff B., Störmann R., Ranke J., Mölter K., Stock F., Oberheitmann B., Hoffmann W., Hoffmann J., Nüchter M., Ondruschka B. and Filser J. (2003). How hazardous are ionic liquids? Structure–activity relationships and biological testing as important elements for sustainability evaluation. Green Chemistry 5, 136–142.         [ Links ]

Judd S. (2008). The status of membrane bioreactor technology. Trends in Biotechnology. 26, 109–116.         [ Links ]

Magaña–Reyes M., Morale M. and Revah S. (2005). Methyl tert–butyl ether and tert–butyl alcohol degradation by Fusarium solani. Biotechnology Letters 27, 1797–1801.         [ Links ]

Mendonça E., Martins A. and Anselmo A.M. (2004). Biodegradation of natural phenolic compounds as single and mixed substrates by Fusarium flocciferum. Electronic Journal of Biotechnology 7, 30–37.         [ Links ]

Ohandja D.G. and Stuckey D.C. (2006). Development of a membrane–aerated biofilm reactor to completely mineralise perchloroethylene in wastewaters. Journal of Chemical Technology and Biotechnology 81, 1736–1744.         [ Links ]

Qureshi N., Annous B.A., Ezeji T.C., Karcher P. and Maddox I.S. (2005). Biofilm reactors for industrial bioconversion processes: employing potential of enhanced reaction rates. Microbial Cell Factories 4, 24.         [ Links ]

Ranke J., Stolte S., Störmann R., Arning J. and Jastorff B. (2007). Design of sustainable chemical products – the example of ionic liquids. Chemical Reviews 107, 2183–2206.         [ Links ]

Regalado V., Rodriguez A., Perestelo F., Carnicero A., De La Fuente G. and Falcon M.A. (1997) Lignin degradation and modification by the soil–inhabiting fungus Fusarium proliferatum. Applied and Environmental Microbiology 63, 3716–3718.         [ Links ]

Romero A., Santos A., Tojo J. and Rodríguez A. (2008). Toxicity and biodegradability of imidazolium ionic liquids. Journal of Hazardous Materials 151, 268–273.         [ Links ]

Stasiewicz M., Mulkiewicz E., Tomczak–Wandzel R., Kumirska J., Siedlecka E. M., Golebiowski M., Gajdus J. and Stepnowski P. (2008). Assessing toxicity and biodegradation of novel, environmentally benign ionic liquids (1–alkoxymethyl–3–hydroxypyridinium chloride, saccharinate and acesulfamates) on cellular and molecular level. Ecotoxicology and Environmental Safety 71, 157–165.         [ Links ]

Stepnowski P. and Zaleska A. (2005). Comparison of different advanced oxidation processes for the degradation of room temperature ionic liquids. Journal of Photochemistry and Photobiology A–Chemistry 170, 45–50.         [ Links ]

Terada A., Yamamoto T., Igarashi R., Tsuneda S. and Hirata A. (2006). Feasibility of a membrane–aerated biofilm reactor to achieve controllable nitrification. Biochemical Engineering Journal 28, 123–130.         [ Links ]

Volke T.L., Gutiérrez–Rojas M. and Favela–Torres E. (2006). Biodegradation of high concentrations of hexadecane by Aspergillus niger in a solid–state system: kinetic analysis. Bioresource Technology 97, 1583–1591.         [ Links ]

Wasserscheid P., van Hal R. and Bösmann A. (2002). 1–n–Butyl–3–ethylimidazolium ([bmim]) octylsulfate—an even 'greener' ionic liquid. Green Chemistry. 4, 400–404.         [ Links ]

Wells A.S. and Coombe V.T. (2006). On the freshwater ecotoxicity and biodegradation properties of some common ionic liquids. Organic Process Research & Development 10, 794–798.         [ Links ]

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons