SciELO - Scientific Electronic Library Online

 
vol.8 número1Análisis comparativo de la dinámica de un cristalizador continuo tipo tanque agitado: Casos isotérmico y por enfriamientoAnálisis de la producción de entropía en una máquina térmica operada con un sistema químico no-lineal índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Revista mexicana de ingeniería química

versão impressa ISSN 1665-2738

Rev. Mex. Ing. Quím vol.8 no.1 Ciudad de México Abr. 2009

 

Simulación y control

 

Desempeño dinámico de esquemas alternativos a la columna petlyuk (columna de pared divisoria) para la separación de mezclas ternarias

 

Dynamic behavior of alternate schemes to petlyuk column (dividing wall column) for separation of ternary mixtures

 

J. Martínez–Cisneros, A. A. Hernández–Sánchez, J.G. Segovia–Hernández*, S. Hernández, H. Hernández

 

Universidad de Guanajuato, Departamento de Ingeniería Química, Noria Alta s/n, Guanajuato, Gto., México 36050. * Autor para la correspondencia. E–mail: gsegovia@quijote.ugto.mx Tel: (52) 473 73 20006 ext 8142

 

Recibido 25 de Julio 2008
Aceptado 8 de Diciembre 2008

 

Resumen

Los sistemas de destilación térmicamente acoplados han sido propuestos ya que pueden efectuar la tarea de separación de una mezcla utilizando bajos consumos energéticos en comparación con los esquemas convencionales de destilación. La estructura de estos sistemas complejos ofrece retos en el área de control debido a la transferencia de corrientes de vapor (o líquido) entre las columnas. En particular, la presencia de los reciclos en estos sistemas acoplados ha generado la noción de que algunos problemas de control pueden ser detectados durante la operación de dichos sistemas en comparación con el buen desempeño de las secuencias de destilación convencionales. Esta es una de las principales razones para que no haya un amplio uso de las columnas térmicamente acopladas a nivel industrial. Recientemente algunos esquemas alternos a la columna Petlyuk han sido propuestos. En este trabajo se analiza las propiedades de control de dos esquemas alternativos a la columna Petlyuk. El desempeño dinámico de los sistemas es analizado utilizando la técnica de la descomposición en valores singulares y mediante simulaciones dinámicas rigurosas. Los resultados muestran que las estructuras alternativas muestran mejores propiedades de control que la estructura Petlyuk convencional.

Palabras clave: columna Petlyuk, propiedades de control, ahorro de energía, columnas alternativas, diseño.

 

Abstract

Thermally coupled distillation systems have been proposed to perform distillation separation tasks with the incentive of achieving lower energy consumption levels with respect to conventional distillation sequences. The structure of the complex systems offers some control challenges arising from the transfer of vapor (or liquid) streams between the columns. In particular, the presence of recycle streams in the coupled schemes has influenced the notion that control problems might be expected during the operation of those systems with respect to the rather well–known behavior of conventional distillation sequences. That has been one of the main reasons for the lack of industrial implementation of thermally coupled distillation schemes. Recently, some alternate schemes to Petlyuk column have been proposed. In this work, we analyze the control properties of two alternative distillation schemes to the Petlyuk column. The dynamic behavior is analyzed using the technique of singular value decomposition and rigorous dynamic simulations. The results indicate that alternate structures show better control properties than traditional Petlyuk structure.

Keywords: Petlyuk column, control properties, energy savings, alternative sequences, design.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Agradecimientos

Los autores muestran un agradecimiento a la Universidad de Guanajuato, CONACyT y CONCyTEG por el apoyo brindado para la realización de este trabajo.

 

Referencias

Agrawal, R., Fidkowski, Z. (1998). More operable arrangements of fully thermally coupled distillation columns. AIChE Journal 44, 2565–2568.         [ Links ]

Alcántara–Ávila, R., Cabrera–Ruiz, J., Tamayo–Galván, V.E., Segovia–Hernández, J.G., Hernández, S. (2006). Control properties of alternative schemes to thermally coupled distillation columns for ternary mixtures separation, in distillation and absorption '06. IChemeE Symposium Series No. 152, UK, 610–618.         [ Links ]

Chen, D. (2002). Relative gain array analysis for uncertain process models. AIChE Journal 48, 302–310.         [ Links ]

Dünnebier, G., Pantelides, C. (1999). Optimal design of thermally coupled distillation columns. Industrial and Engineering Chemistry Research 38, 162–176.         [ Links ]

Finn, A. J. (1993). Consider Thermally Coupled Distillation. Chemical Engineering Progress, October 41–50.         [ Links ]

Gabor, M., Mizsey, P. (2008). A methodology to determine controllability indices in the frequency domain. Industrial and Engineering Chemistry Research 47, 4807–4816.         [ Links ]

Glinos, K., Malone, F. (1988). Optimality regions for complex column alternatives in distillation systems. Chemical Engineering Research and Design 66, 229–240.         [ Links ]

Gómez–Castro, F.I., Segovia–Hernández, J.G., Hernández, S., Gutiérrez–Antonio, C., Briones–Ramírez, A. (2008). Dividing wall distillation columns: Optimization and control properties. Chemical Engineering and Technology, 31, 1246–1260.         [ Links ]

Hernández, S., Pereira–Pech, S., Jiménez, A., Rico–Ramírez, V. (2003). Energy efficiency of an indirect thermally coupled distillation sequence. Canadian Journal of Chemical Engineering 81, 1087–1091.         [ Links ]

Hernández, S., Jiménez, A. (1996). Design of optimal thermally–coupled distillation systems using a dynamic model. Transactions of the Institute of Chemical Engineering 74, 357–362.         [ Links ]

Hernández, S., Jiménez, A. (1999a). Design of energy–efficient Petlyuk systems. Computers and Chemical Engineering 23, 1005–1010.         [ Links ]

Hernández, S., Jiménez, A. (1999b). Controllability analysis of thermally coupled distillation systems. Industrial and Engineering Chemistry Research 38, 3957–3963.         [ Links ]

Jiménez, A., Hernández, S., Montoy, F. A., Zavala–García, M. (2001). Analysis of control properties of conventional and nonconventional distillation sequences, Industrial and Engineering Chemistry Research 40, 3757 –3761.         [ Links ]

Kaibel, G., Schoenmakers, H. (2002). Process synthesis and design in industrial practice, In Proceedings of ESCAPE–12, Elsevier; Amsterdam. The Netherlands, 9–20.         [ Links ]

Kaymak, D.B., Luyben, W.L. (2008). Quantitative comparison of dynamic controllability between a reactive distillation column and a conventional multi–unit process. Computers and Chemical Engineering 32, 1456–1470.         [ Links ]

Kim, Y.H. (2006). A new fully thermally coupled distillation column with postfractionator. Chemical Engineering and Processing 45, 254–263.         [ Links ]

Klema, V.C., Laub, A.J. (1980). The singular value decomposition: Its computation and some applications. IEEE Transactions on Automatic Control 25, 164–170.         [ Links ]

Luyben, W.L. (2008a). Design and control of a fully heat–integrated pressure–swing azeotropic distillation system. Industrial and Engineering Chemistry Research 47, 2681–2695.         [ Links ]

Luyben, W.L. (2008b). Effect of solvent on controllability in extractive distillation. Industrial and Engineering Chemistry Research 47, 4425–4439.         [ Links ]

Malinen, I., Tanskanen, J. (2007) A rigorous minimum energy calculation method for a fully thermally coupled distillation system. Transactions of the Institute of Chemical Engineers 85, 502 –509.         [ Links ]

Muralikrishna, K.; Madhavan, K.P., Shah, S.S. (2002). Development of dividing wall distillation column design space for a specified separation. Transactions of the Institute of Chemical Engineers 80, 155–166.         [ Links ]

Papastathopoulou, H. S., Luyben, W.L. (1991). Control of binary sidestream column. Industrial and Engineering Chemistry Research 30, 705–713.         [ Links ]

Rong, B.G., Kraslawski, A. (2002). Optimal design of distillation flowsheets with a lower number of thermal couplings for multicomponent separations. Industrial and Engineering Chemistry Research 41, 5716–5726.         [ Links ]

Segovia–Hernández, J.G., Hernández, S., Jiménez, A., (2002a). Control behavior of thermally coupled distillation sequences. Transactions of the Institute of Chemical Engineers 80, 783–789.         [ Links ]

Segovia–Hernández, J.G.,Hernández, S., Jiménez, A. (2002b) Análisis dinámico de secuencias de destilación térmicamente acopladas. Información Tecnológica 13, 103–108.         [ Links ]

Segovia–Hernández, J.G., Hernández, S., Rico –Ramírez V., Jiménez, A. (2004). A comparison of the feedback control behavior between thermally coupled and conventional distillation schemes. Computers and Chemical Engineering 28, 811–819.         [ Links ]

Segovia–Hernández, J.G., Hernández, S., Jiménez, A. (2005a). Analysis of dynamic properties of alternative sequences to the Petlyuk column. Computers and Chemical Engineering 29, 1389–1399.         [ Links ]

Segovia–Hernández, J.G., Hernández, S., Jiménez, A., Femat, R. (2005). Dynamic behavoir and control of the Petlyuk scheme via a proportional–integral controller with disturbance estimation. Chemical and Biochemical Engineering Quarterly 19, 243–253.         [ Links ]

Segovia–Hernández, J.G., Hernández–Vargas, E.A., Márquez–Muñoz, J.A., Hernández, S., Jiménez, A. (2005c). Control properties and thermodynamic analysis of two alternatives to thermally coupled distillation systems with side columns. Chemical and Biochemical Engineering Quarterly 19, 325–332.         [ Links ]

Segovia–Hernández, J.G., Hernández, S., Jiménez, A. (2006a). A short note about energy–efficiency performance of thermally coupled distillation sequences. Canadian Journal of Chemical Engineering 84, 139–144.         [ Links ]

Segovia–Hernández, J.G., Bonilla–Petriciolet, A., Salcedo–Estrada, L.I. (2006b) Dynamic analysis of thermally coupled distillation sequences with unidirectional flows for the separation of ternary mixtures. Korean Journal of Chemical Engineering 23, 689–698.         [ Links ]

Segovia–Hernández, J.G.,. Hernández–Vargas, E.A., Márquez–Muñoz, J.A. (2007a). Control properties of thermally coupled distillation sequences for different operating conditions. Computers and Chemical Engineering 31, 867–874.         [ Links ]

Segovia–Hernández, J.G., Hernández, S., Femat, R., Jiménez, A. (2007b). Control of thermally coupled distillation sequences with dynamic estimation of load disturbances. Industrial and Engineering Chemistry Research 46, 546–558.         [ Links ]

Tedder, D. W., Rudd, D.F. (1978). Parametric studies in industrial distillation: Part I. Design comparisons. AIChE Journal 24, 303–315.         [ Links ]

Triantafyllou, C., Smith, R. (1992). The design and optimization of fully thermally coupled distillation columns, Transactions of the Institute Chemical Engineers 70, 118–132.         [ Links ]

Vaca, M., Jiménez, A., Monroy –Loperena, A. (2007). Design of Petlyuk distillation columns aided with collocation techniques. Industrial and Engineering Chemistry Research 46, 5365–5370.         [ Links ]

Wang, S.J., Lee, C.J., Jang, S.S., Shieh, S.S. (2008). Plant–wide design and control of acetic acid dehydration system via heterogeneous azeotropic distillation and divided wall distillation. Journal of Process Control 18, 45–60.         [ Links ]

Wang, S.J., Wong, D.S.H. (2008). Controllability and energy efficiency of a high–purity divided wall column. Chemical Engineering Science 62, 1010–1025.         [ Links ]

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons