SciELO - Scientific Electronic Library Online

 
vol.7 número3Comportamiento de un reactor de biopelícula para tratamiento de agua residual a diferentes velocidades de flujoAplicaciones de microfluídica en bioseparaciones índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de ingeniería química

versión impresa ISSN 1665-2738

Rev. Mex. Ing. Quím vol.7 no.3 Ciudad de México dic. 2008

 

Biotecnología

 

Utilization of fisheries by–catch and processing wastes for lactic acid fermented silage and evaluation of degree of protein hydrolisis and in vitro digestibility

 

Aprovechamiento de fauna de acompañamiento del camarón y desperdicios de fileteado de pescado para la producción de hidrolizados proteicos y evaluación del grado de hidrólisis y digestibilidad in vitro

 

J. C. Ramírez– Ramírez1,3, S. Huerta1, L. Arias2, A. Prado1 and K. Shirai1*

 

1 Departamento de Biotecnología, Laboratorio de Biopolímeros. * Corresponding author. E–mail: smk@xanum.uam.mx Tel: +(52) 5558044921; Fax: +(52) 5558044712

2 Departamento de Biología de la Reproducción Universidad Autónoma Metropolitana—Iztapalapa. San Rafael Atlixco No. 186. Col. Vicentina, C.P. 09340., México D.F.

3 Universidad Autónoma de Nayarit Ciudad de la Cultura Amado Nervo, C.P. 63155 Tepic, Nayarit. México.

 

Received 7th of May 2008
Accepted 26th of September 2008

 

Abstract

The purpose of this study was to produce protein hydrolysates from lactic acid fermentation of three sources of fish wastes: Shrimp by catch (SC), Sphyraena ensis wastes (SB) and mixture of fisheries processing wastes from several species (MixW). MixW were added with several sugar cane molasses concentrations as the carbon source, 180 g.kg–1 of sugar molasses gave the fastest acidification. The maximum concentration of lactic acid (Pmax) was significantly higher with Lactobacillus sp. B2 than that obtained with Lb. plantarum. MixW was selected for scaling up and inoculated with Lactobacillus sp. B2 due to the enhanced lactic acid production and availability. According to microbiological and chemical analyses, the fermented product was well preserved due to the acid produced and the reduction in aW (0.94) that inhibit spoilage microorganisms and putrefaction. The coefficient of protein hydrolysis at 144 h of fermentation was significantly higher (0.94) than the obtained with raw MixW (0.12). The coefficient of protein in vitro digestibility (CPD) was also determined, which was higher, 0.88, than raw MixW (0.69).

Keywords: fish wastes, Lactobacillus, protein hydrolysis, digestibility, lactic acid.

 

Resumen

El propósito de este estudio fue producir hidrolizados proteicos por fermentación ácido láctica de tres fuentes de desecho de pescado: Fauna de acompañamiento del camarón (SC), desechos de bicuda Sphyraena ensis (SB) y una mezcla de desperdicios del fileteado de varias especies de pescado (MixW). MixW fue mezclada con varias concentraciones de melaza de caña de azúcar (60, 120 y 180 g.kg–1) como fuente de carbono, 180 g.kg–1 fue la cantidad de melaza que produjo acidificación más rápida. Se evalúo la actividad de dos lactobacilos, Lactobacillus sp. B2 presento la mayor concentración de ácido láctico (Pmax) que con Lb. plantarum. MixW y Lactobacillus sp. B2 fueron seleccionados para el escalamiento. La masa fermentada obtenida de acuerdo a los análisis microbiológicos y químicos realizados fue conservada debido al ácido producido y la reducción en aW (0.94). El coeficiente de hidrólisis de proteína de este producto a las 144 h de fermentación fue significativamente más alto (0.94) que el obtenido con MixW sin fermentar (0.12). El coeficiente de digestibilidad in vitro de proteína (CPD) también fue más alto (0.88) que el de MixW sin fermentar (0.69).

Palabras clave: desperdicios de pescado, Lactobacillus, hidrólisis de proteína, digestibilidad, ácido láctico.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Acknowledgments

The authors would like to thank to SAGARPA–CONACYT (Mexico) and European Union for research funding No. 2005–1, to PROMEP (Government of Mexico) for scholarship grant to Mr. Ramirez.

 

References

AOAC (1990). Methods of Analysis (15th ed.). Association of Official Analytical Chemist. Washington, D.C.         [ Links ]

Anonymous (2003). Anuario estadístico de pesca. SAGARPA. Gobierno de México.         [ Links ]

Arason, S. (1994). Production of fish silage. In: Fisheries processing, Biotechnological applications. (A.M.Martin, eds.) 244–272. Chapman & Hall, London.         [ Links ]

Baek, H.H., Cadwallader, K.R. (1995). Enzymatic hydrolysis of crayfish processing by–products. Journal of Food Science 60, 929–935.         [ Links ]

Benjakul, S., Morrisey, M.T. (1997). Protein hydrolysates from pacific whiting solid wastes. Journal of Agriculture and Food Chemistry 45, 3423–3430.         [ Links ]

Calsamiglia, S., Stern, M.D.A. (1995). Three–step in vitro procedure for estimating intestinal digestion of protein in ruminant. Journal of Animal Science 73, 1459–1465.         [ Links ]

Cira, L.A., Huerta, S., Hall, G.M., Shirai, K. (2002). Pilot scale lactic acid fermentation of shrimp wastes for chitin recovery. Process Biochemistry 37, 1359–1366.         [ Links ]

Coello, N., Brito, L., Nonus, M. (2000). Biosynthesis of L–lysine by Corynebacterium glutamicum grown on fish silage. Bioresource Technology 73, 221–225.         [ Links ]

Dapkevicius, M.L., Nout, M.J., Rombouts, F.M., Houben, J.H., Wymenga, W. (2000). Biogenic amine formation and degradation by potential fish silage starter microorganisms. International Journal of Food Microbiology 57, 107–114.         [ Links ]

Dubois, M., Gilles, K.A., Hamilton, J.K., Robers, P.A., Smith, F. (1956). Colorimetric method for determination of sugars and related sugars. Analytical Chemistry 28, 350–356.         [ Links ]

Espe, M.H., Haaland, H., Njaa, L.R. (1992). Substitution of fish silage protein and a free amino acid mixture for fish meal protein in a chicken diet. Journal of the Science of Food and Agriculture 58, 315–319.         [ Links ]

Gildberg, A. (2004). Enzymes and bioactive peptides from fish waste related to fish silage, fish feed and fish sauce production. Journal of Aquatic Food Product Technology 13, 3–11.         [ Links ]

Horn, S.J., Aspmo, S.I., Eijsink, V.G.H. (2005). Growth of Lactobacillus plantarum in media containing hydrolysates of fish viscera. Journal of Applied Microbiology 99, 1082-1089.         [ Links ]

Jay, J.M. (2000). Modern Food Microbiology (6th ed.). Aspen Publishers, Gaithersburg, Maryland.         [ Links ]

Lian, P.Z., Lee, C.M., Park, E. (2005). Characterization of squid–processing byproduct hydrolysate and its potential as aquaculture feed ingredient. Journal of Agriculture and Food Chemistry 53, 5587-5592.         [ Links ]

Liceaga–Gesualdo, A.M., Li–Chan, E.C.Y. (1999). Functional properties of fish protein hydrolysate from Herring (Clupea harengus). Journal of Food Science 64, 1000–1004.         [ Links ]

Matsumoto, Y., Saucedo–Castañeda, G., Revah, S., Shirai, K. (2004). Production of P–N–acetylhexosaminidase of Verticillium lecanii by solid state and submerged fermentations utilizing shrimp waste silage as substrate and inducer. Process Biochemistry 39, 665–671.         [ Links ]

Plascencia, J.M., Olvera, M.A., Arredondo, J.L.A., Shirai, K. (2002). Feasibility of fishmeal replacement by shrimp head silage protein hydrolysates in Nile Tilapia (Oreochromis niloticus L) diets. Journal of the Science of Food and Agriculture 82, 753–759.         [ Links ]

Ravallec, P.R., Charlot, C., Pires, C., Braga, V., Batista, I., Van, W.A., Le, G.Y., Fouchereau, P.M. (2001). The presence of bioactive peptides in hydrolysates prepared from processing waste of sardine (Sardine pilchardus). Journal of the Science of Food and Agriculture 81 , 1120–1125.         [ Links ]

Ray, B. (1996). Probiotics of lactic acid bacteria: Science or myth. En: Lactic acid bacteria: Current Advances in Metabolism, Genetic and Applications, (T.F. Bozoglu & B, Ray, eds.), Pp. 100–135. Springer–Verlag, Berlin, Alemania.         [ Links ]

Shirai, K., Guerrero, I., Huerta, S., Saucedo, G., Hall, G.M. (1997). Aspects of protein breakdown during the lactic acid fermentation. In: Advances in Chitin Science, (A. Domard, F.A.F. Roberts & K.M. Vârum eds.), Pp. 56-63. Jacques André Publisher, Lyon, Francia.         [ Links ]

Shirai, K., Guerrero, I., Huerta, S., Saucedo, G., Castillo, A., Gonzalez, R.O., Hall, G.M. (2001). Effect of initial glucose concentration and inoculation level of lactic acid bacteria in shrimp waste ensilation. Enzyme Microbial Technology 28, 446–452.         [ Links ]

Tungkawachara, S., Park, J.W., Choi, Y.J. (2003). Biochemical properties and consumer acceptance of pacific whiting fish sauce. Journal of Food Science 68, 855–860.         [ Links ]

Vazquez, J.A., González, M.P., Murado, M.A. (2005). Peptones from autohydrolysed fish viscera for nisin and pediocin production. Journal of Biotechnology 112, 299–311.         [ Links ]

Vidotti, R.M., Carneiro, D.J., Viegas, E.M. (2002). Acid and fermented silage characterization and determination of apparent digestibility coefficient of crude protein for Piaractus mesopotamicus. Journal of the World Acuaculture Society 33, 57– 62.         [ Links ]

Yin, L.J., Tong, Y.L., Jiang, S.T. (2005). Improvement of the functionality of minced mackerel by hydrolysis and subsequent lactic acid bacterial fermentation. Journal of Food Science 70, 172–178.         [ Links ]

Zahar, M., Benkerrow, N., Guerouali, A., Laraki, Y., Yaboudi, K.E. (2002). Effect of temperature, anaerobiosis, stirring and salt addition on natural fermentation silage of sardine and sardine wastes in sugarcane molasses. Bioresource Technology 82, 171–176.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons