SciELO - Scientific Electronic Library Online

 
vol.7 issue1Power generation from biomass estimation for projects of the clean development mechanism programEffects of air-drying on the shrinkage, surface temperatures and structural features of apples slabs by means of fractal analysis author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Revista mexicana de ingeniería química

Print version ISSN 1665-2738

Rev. Mex. Ing. Quím vol.7 n.1 Ciudad de México Apr. 2008

 

Ingeniería de alimentos

 

Estudio de propiedades físicas de alimentos mexicanos durante la congelación y el almacenamiento congelado

 

Study of physical properties in mexican foods during freezing and frozen storage

 

K.M. Machado–Velasco y J.F. Vélez–Ruiz*

 

Departamento de Ingeniería Química e Ingeniería de Alimentos, Universidad de las Américas, Puebla. Ex–Hda. Sta. Catarina Mártir, Cholula, Pue. 72820 México. * Autor para la correspondencia: E–mail: jorgef.velez@udlap.mx Tel. (222) 2292648, 2292126; Fax: (222) 2292727

 

Recibido 26 de Junio 2001
Aceptado 11 de Enero 2008

 

Resumen

Se realizó un estudio del proceso de congelación en diez alimentos para determinar el efecto del proceso de cambio de fase, así como su almacenamiento congelado durante 2 meses. Se seleccionaron diez alimentos con diferentes características, los cuales fueron caracterizados en su forma fresca y congelada, midiendo su contenido de humedad, temperatura y tiempo de congelación, color, densidad, propiedades termofísicas y atributos texturales. La humedad en los alimentos varió desde 13 hasta 91%, con temperaturas de congelación muy variadas, de –0.10°C para el nopal, hasta –35.2°C para la pasta de mole. En general, para la predicción del tiempo de congelación, la ecuación de Plank resultó mejor que la de Salvadori y Mascheroni, sobre todo para ciertos alimentos como nopal, masa, puré, pellizcada y tamal, en que los errores fueron menores a 21%. El color de los alimentos, expresado por los parámetros de Hunter como cambio neto, varió poco durante el almacenamiento. La densidad se mantuvo constante y sin efecto significativo del almacenamiento congelado. La conductividad térmica resultó más baja para el pan de hojaldra (0.01 W/m°C), y más alta para la nogada fresca (0.49 W/m°C), las conductividades aumentaron para el alimento congelado con valores extremos de 0.06 para el pan y de 1.51 W/m°C para el nopal. La conductividad de la mayoría de los alimentos estudiados fue predicha con errores menores al 25% por la ecuación de Spells. La textura fue la propiedad más afectada por la congelación y el almacenamiento.

Palabras clave: congelación, almacenamiento congelado, alimentos mexicanos, propiedades termofísicas.

 

Abstract

A study on freezing of foods was carried out to know the effect of freezing process and storage time on some properties of ten selected items. Mexican foods were selected including different characteristics, they were characterized in fresh form as well as frozen; moisture, freezing point and freezing time, color, density, thermal properties and texture were determined. Moisture ranged from 13 to 91%, freezing point varied from –0.10°C for nopal to –35.2°C for "mole" paste; in general, for freezing time evaluation of the studied foods, Plank's model was better than Salvadori and Mascheroni equation. Net color of foods based on Hunter parameters showed low changes during storage. Density was constant did not showing significant effect of storage time. Thermal conductivity ranged from 0.01 for fresh "hojaldra" to 0.49 W/m°C for "nogada", changing their values in frozen samples that changed from 0.06 for bread to 1.51 W/m°C for nopal. Thermal conductivity for most of the foods was predicted by Spells equation with error less than 25%. Food texture was the most affected property.

Keywords: freezing, frozen storage, Mexican foods, thermophysical properties.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Referencias

AACC. (1986). Approved Methods of the American Association of Cereal Chemists. St. Paul, MN.         [ Links ]

Agnelli, M.E. y Mascheroni, R.H. (2002). Quality evaluation of foodstuffs frozen in a cryomechanical freezer. Journal of Food Engineering 52, 257–263.         [ Links ]

Anzaldúa–Morales, A., Brusewitz G.H. y Anderson, J.A. (1999). Pecan texture as affected by freezing rates, storage temperature, and thawing rates. Journal of Food Science.64 (2), 332–335.         [ Links ]

AOAC. (2000). Official Methods of Analysis. Association of Official Analytical Chemists. International. 17th Edition. Maryland, USA.         [ Links ]

Bandyopadhyay, M., Runu, C. y Utpal, R. (2005). The Effect of coagulants on the texture of chahnna (an acid and heat coagulated product made from milk). International Journal of Food Science and Technology 40, 799–810.         [ Links ]

Bunger, A., Moyano, P.C., Vega, R.E., Guerrero, P. y Osorio, F. (2004). Osmotic dehydration and freezing as combined processes on apple preservation. Food Science and Technology International 10, 163–169.         [ Links ]

Campañone L.A., Salvadori V.O. y Masheroni R.H. (2001). Weight loss during freezing and storage of unpackaged foods. Journal of Food Engineering 35, 6–15.         [ Links ]

Canet, W., Álvarez, M.D., Fernández, C. y Tortosa, M.E. (2005). The effect of sample temperature on instrumental and sensorial properties of mashed potato products. International Journal of Food Science and Tehcnology 40, 481–493.         [ Links ]

Carriles, J.L. y Zaragoza, S. (1988). Caracterización del proceso de elaboración de moles en pasta. Tesis de Licenciatura. Universidad de las Américas, Puebla, México.         [ Links ]

Chang, H.D. y Tao, L. (1981). Correlations of enthalpies of food systems. Journal of Food Science 46, 1493–1497.         [ Links ]

Chen, C.S. y Nagy, S. (1987). Prediction and correlation of freezing point depression of aqueous solutions. Transactions ASAE 30 (4), 1176–1180.         [ Links ]

Chun–Lung, G., Wei–Tang, L. y Jianhua, M. (2005). Individual wrapping of radishes with food packaging film. International Journal of Food Science and Technology 40, 879–883.         [ Links ]

Desrosier, N.W. (1970). The Technology of Food Preservation, AVI Publishing Co. Inc., Westport Conn., EU. Pp. 91–119.         [ Links ]

Fikiin, K.A. y Fikiin, A.G. (1999). Predictive equations for thermophysical properties and enthalpy during cooling and freezing of food materials. Journal of Food Engineering 40, 16.         [ Links ]

Góral, D. y Kluza, F. (2002). Experimental and analytical determination of freezing point depression. Journal of Polish Agricultural Universities, Agricultural Engineering 5 (2), 14 hojas.         [ Links ]

Graiver, N.G., Zaritzky N.E. y Califano, A.N. (2004). Viscoelastic behavior of refrigerated and frozen low–moisture Mozarella cheese. Journal of Food Science 69 (3), 123–128.         [ Links ]

Heldman D.R. (1975). Food Process Engineering. AVI Pub. Co. Inc, Westport, Connecticut, EU. Pp. 151–198.         [ Links ]

Heldman D.R. (1983). Factors influencing food freezing rates. Food Technology April, 103109.         [ Links ]

Heldman, D. y Singh, P. (1986). Thermal properties of frozen foods. En: Physical and Chemical Properties of Food, (M.R. Okos, ed.), ASAE, Michigan, EU. Pp. 120–137.         [ Links ]

Hung, Y.C. y King, N.K. (1996). Fundamentals aspects of freeze–cracking. Food Technology Dec., 59–61.         [ Links ]

Ibarz, A. y Barbosa, G. (2003). Unit Operations in Food Engineering. CRC Press, Boca Raton FLO., EU. Pp. 535–551.         [ Links ]

INN. (1974). Valor Nutritivo de los Alimentos Mexicanos. Tablas de Uso Práctico. Instituto Nacional de la Nutrición, México.         [ Links ]

Jie, W., Lite, L. y Yang, D. (2003). The correlation between freezing point and soluble solids of fruits. Journal of Food Engineering 60, 481484.         [ Links ]

Lee, K.A. y Brennand, Ch. (2005). Physico–chemical, textural and sensory properties of a fried–cookie system containing soy protein isolate. International Journal of Food Science and Technology 40, 501–508.         [ Links ]

Levy, F.L. (1979). Enthalpy and specific heat of meat and fish in the freezing range. Journal of Food Technology 14, 549.         [ Links ]

Lim, M., Wu, H., Breckell, M. y Birch, J. (2006). Influence of the glass transition and storage temperature of frozen peas on the loss of quality attributes. International Journal of Food Science and Technology 41, 507–512.         [ Links ]

Machado, K. (2006). Determinación de propiedades termofísicas de productos alimenticios mexicanos congelados. Tesis de Licenciatura. Universidad de las Américas, Puebla, México.         [ Links ]

Machado–Velasco, K., Sosa–Morales, M.E., Rahman, S. y Vélez–Ruiz, J.F. (2007). Freezing point: Measurement, data and prediction. En Food de Ingeniería Química Vol. 7, No. 1 (2008) 41–54 Properties Handbook (M.S. Rahman ed.), en revisión por CRC Press.         [ Links ]

Mallet, C.P. (1993). Frozen Food Technology. Blackie Academic and Profesional. Londres.         [ Links ]

Manual KD2. (2005). Decagon Devices, Inc. Pullman, WA. EUA.         [ Links ]

Martins, R.C y Silva, C.L.M. (2004a). Frozen green beans (Phaseolus vulgaris, L.) Quality profile evaluation during home storage. Journal of Food Engineering 64, 481–488.         [ Links ]

Martins, R.C y Silva, C.L.M. (2004b). Green beans (Phaseolus vulgaris, L.) Quality loss upon thawing. Journal of Food Engineering 65, 3748.         [ Links ]

Martins, R.C y Silva, C.L.M. (2004c). Inverse problem methodology for thermal–physical properties estimation of frozen green beans. Journal of Food Engineering 63, 383–392.         [ Links ]

Navarro, A.S., Martino, M.N. y Zarinski, M.E. (1995). Effect of freezing rate on the rheological behavior of systems based on starch and lipid phase. Journal of Food Engineering 26, 481–495.         [ Links ]

Okos M. R. (1986). Physical and Chemical Properties of Foods. ASAE. American Society of Agricultural Engineers.         [ Links ]

Opiyo, A. y Ying, T.J. (2005). The effects of 1–methyl–cyclopropene treatment on the shelf–life and quality of cherry tomato (Lycopersicon esculentum var. cerasiforme) fruit. International Journal of Food Science and Technology 40, 665–673.         [ Links ]

Palafox, L. (2005). Desarrollo de masas panarias prefermentadas congeladas de bajo costo para la elaboración de pan danés. Tesis de Licenciatura. Universidad de las Américas, Puebla, México.         [ Links ]

Rahman, M. S. (1994). The accuracy of prediction of the freezing point of meat from general methods. Journal of Food Engineering 21, 127–136.         [ Links ]

Rahman, M.S. y Driscoll, R.H. (1991). Thermal conductivity of seafoods: calamari, octopus and prawn. Food Australia 43(8), 356.         [ Links ]

Rahman, M. S. and Vélez–Ruiz J.F. (2007). Food Preservation by Freezing. In Handbook of Food Preservation (M.S. Rahman Ed.). Second Edition, CRC Press, Boca Raton FL, USA. Pp. 635–665.         [ Links ]

Salvadori, V.O. y Mascheroni R.H. (1991). Prediction of freezing and thawing times of foods by means of a simplified analytical method. Journal of Food Engineering 13, 6778.         [ Links ]

Salvadori, V.O., Reynoso R.O., de Michaelis, A. y Mascheroni, R. H. (1987). Freezing time predictions for regular shaped foods: a simplified graphical method. International Journal of Refrigeration 10, 357–361.         [ Links ]

Salvadori, V.O., de Michaelis, A. y Mascheroni, R. H. (1997). Prediction of freezing times for regular multi–dimensional foods using simple formulae. Lebensmittel Wissenchaft und Technology 30, .30–35.         [ Links ]

Sanz P.D., Dominguez M. y Mascheroni R.H. (1989). Equations for the prediction of thermophysical properties of meat products. Latin American Applied Research 19, 155.         [ Links ]

Simpson, R. y Cortés, C. (2004). Inverse method to estimate thermophysical properties of foods at freezing temperatures: Apparent volumetric specific heat. Journal of Food Engineering. 64, 5.         [ Links ]

Singleton, J.A. y Pattee, H.E. (1992). Maturity and storage affect freeze damage in peanuts. Journal of Food Science. 57 (6), 1382–1384, 1411.         [ Links ]

Singh, R.P. y Heldman, D.R. (2001). Introduction to Food Engineering. Academic Press, Glascow, RU. Pp. 410–439.         [ Links ]

Si–quan, L., Howard, Q.Z., Toni, J. y Fu–hung, H. (2005). Textural modification of soya–bean/corn extrudates as affected by moisture content, screw speed and soya–bean concentration. International Journal of Food Science and Technology 40, 731–741.         [ Links ]

Telis, V.R.N., Telis–Romero, J., Sobral, P.J.A. y Gabas, A.L. (2007). Freezing point and thermal conductivity of tropical fruit pulps: mango and papaya. International Journal of Food Properties 10 (1), 73–84.         [ Links ]

Tseng, Y.C., Youling, X. y Webster, C. (2005). The preservation of the quality of the muscle of red crayfish by pre–storage anti–oxidant dipping treatments in frozen Australian. International Journal of Food Science and Technology 40, 841–848.         [ Links ]

Uruakpa, F. y Arntfield, S. (2005). The physico–chemical properties of commercial canola protein isolate and guar–gum gels. International Journal of Food Science and Technology 40, 643–653.         [ Links ]

Vélez, J.F. (2006). Apuntes de Ingeniería de Alimentos II. Inéditos. Universidad de las Américas, Puebla, México.         [ Links ]

Velez, J.F. y Torres, M. (1994). Evaluación de propiedades físicas de frutas: Melón, papaya, plátano y sandía. Revista Información Tecnológica 5 (1), 39–42.         [ Links ]

Wallapapan, K., Sweat, V.E., Diehl, K.C. y Engler, C.R. (1983). Thermal properties of porous foods. En: Physical and Chemical Properties of Food, (M.R. Okos, ed.), ASAE, Michigan, EU. Pp. 78–119.         [ Links ]

Watt, B.K. y Merril, A.L. (1963). Composition of Foods. USDA, Washington D.C., EU.         [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License