SciELO - Scientific Electronic Library Online

 
vol.7 número1Efecto del medio de cultivo sobre la cinética de producción de fases infectivas juveniles del nematodo entomopatógeno Steinernema carpocapsae, en cultivo monoxénico sumergido índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de ingeniería química

versión impresa ISSN 1665-2738

Rev. Mex. Ing. Quím vol.7 no.1 Ciudad de México abr. 2008

 

Biotecnología

 

Cometabolismo en la biodegradación de hidrocarburos

 

Cometabolism the biodegradation of hydrocarbons

 

M. García–Rivero1* y M. R. Peralta–Pérez2

 

1 Tecnológico de Estudios Superiores de Ecatepec, Laboratorio de Catálisis Enzimática, División de Ciencias Químicas y Bioquímicas, Av. Tecnológico s/n, Col. Valle de Anáhuac, C.P. 55210, Ecatepec de Morelos, Edo. de México, México. * Autor para la correspondencia: E–mail: mgarcia@tese.edu.mx Tel. 50 00 23 00 ext. 2227; Fax: 50 00 23 00 ext. 2304

2 Instituto Tecnológico Superior de Alvarado, División de Ciencias Básicas, Escollera s/n Col. La Trocha, C.P. 95250, Alvarado Ver., México.

 

Recibido 4 de Septiembre 2006
Aceptado 4 de Abril 2008

 

Resumen

El cometabolismo microbiano, es decir, la transformación de un compuesto, llamado cosustrato, en presencia obligada de un sustrato durante el crecimiento o por células en reposo en ausencia del sustrato de crecimiento es parte fundamental de la eliminación biológica de compuestos xenobióticos en el ambiente. En este trabajo se hace especial énfasis en la biodegradación de hidrocarburos, debido a su amplio uso y distribución como contaminantes. Se hace un análisis de los alcances y limitaciones de modelos que explican la cinética del cometabolismo, basados en la ecuación de Monod o Michaelis–Menten, modelando el consumo del sustrato y cosustrato de manera independiente; se incluyen modelos que explican el efecto tóxico del cosustrato o una inhibición de tipo competitiva. Finalmente, se describe la aplicación del cometabolismo para la biorremediación in situ, cuyos avances se han centrado básicamente en la transformación del metil–terbutil–éter (MTBE) y en hidrocarburos alifáticos clorados (HACs) entre los cuales destaca el tricloroetileno (TCE).

Palabras clave: cometabolismo, hidrocarburos, cinética, enzimas.

 

Abstract

Microbial cometabolism, i.e. transformation of a non–growth substrate, namely cosubstrate, in the obligate presence of a growth substrate by growing cells, or by resting cells in the absent of a growth substrate, is a significant part of the total biodegradative activity toward xenobiotic compounds. In this work the importance of cometabolism in the biodegradation of hydrocarbons in the environment is discussed, due to hydrocarbons are the most common groundwater and soil pollutants. Varieties of kinetic equations, Monod or like Michaeles–Menten expressions that have been used to describe cometabolism are discussed; these models assumed that biodegradation takes place as single substrate and the interaction of growth– and non–growth substrate are described as toxic effect or competitive imhibition. Finally, the applicability of the cometabolism for in situ bioremediation is discussed, Methyl tert–Butyl Ether– and halogenated hydrocarbons are the most widespread studied compounds.

Keywords: cometabolism, hydrocarbons, kinetics, enzymes.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Referencias

Alexander M. (1999). Biodegradation and bioremediation. Academic Press. U.S.A.         [ Links ]

Arp, D., Bottomley, P., Cuiffetti, L., Giovannoni, S., Semprini, L. y Williamson, K. (2002). Aerobic cometabolism of chlorinated aliphatic hydrocarbon compounds with butane–grown microorganisms. Hazardous Research Center, Western Region. Project I–OSU–02. (http:www.hsrc.orgwraerobic.html)        [ Links ]

Arp, D., Yeager, C. y Hyman, M. (2001). Molecular and cellular fundamentals of aerobic cometabolism of trichloroethylene. Biodegradation 12, 81–103.         [ Links ]

Atlas, R.M y Bartha, R. (2002). Ecología microbiana y microbiología ambiental. Addison Wesley. España.         [ Links ]

Azizian, M.F., Istok, J.D. y Semprini L. (2005). Push–pull test evaluation of the in situ aerobic cometabolism of chlorinated ethenes by toluene–utilizing Microorganisms. Water Science & Technology 52, 35—40.         [ Links ]

Bouchez M., Blanchet D. y Vandecasteele. (1995). Degradation of polycyclic aromatic hydrocarbons by pure strains and by defined strain associations: inhibition phenomena and cometabolism. Applied Microbiology and Biotechnology 43, 156–164.         [ Links ]

Bruns, M.A., Hanson, J.R., Mefford, J. y Scow, K.M. (2001). Isolate PM1 populations are dominant and novel methyl tert–butyl ether–degrading bacterial in compost biofilter enrichments. Environmental Microbiology 3, 220–225.         [ Links ]

Cl–solutions. Aerobic cometabolism of halogenated aliphatic hydrocarbons. (http://www.cl–solutions.com/pages/products–clout.html).         [ Links ]

Criddle C.S. (1993). The kinetics of cometabolism. Biotechnology and Bioengineering 41, 1048-1056.         [ Links ]

Chang, W., Voice, T.C. y Criddle, C.S. (1993). Kinetics of competitive inhibition and cometabolism in the biodegradation of benzene, toluene, and p–xylene by two Pseudomonas isolates. Biotechnology and Bioengineering 41, 1057–1065.         [ Links ]

Dupasquier, D., Revah, S. y Auria, R. (2002). Biofiltration of Methyl tert–Butyl Ether Vapors by Cometabolism with Pentane: Modeling and Experimental Approach. Environmental Science Technology 36, 247–253.         [ Links ]

Ely, R.L., Hyman, M.R., Arp, D.J., Guenther, R.B. y Williamson, K.J. (1995a). A cometabolic kinetics model incorporating enzyme inhibition, inactivation, and recovery: II. Trichloroethylene degradation experiments. Biotechnology and Bioengineering 46, 232-245.         [ Links ]

Ely, R.L., Williamson, K.J., Guenther, R.B., Hyman, M.R. y Arp, D.J. (1995b). A cometabolic kinetics model incorporating enzyme inhibition, inactivation, and recovery: I. Model development, analysis, and testing. Biotechnology and Bioengineering 46, 218-231.         [ Links ]

Ely, R.L., Williamson, K.J. Hyman, M.R. y Arp, D.J. (1997). Cometabolism of chlorinated solvents by nitrifying bacteria: Kinetics, substrate interactions, toxicity effects, and bacterial response. Biotechnology and Bioengineering 54, 520–534.         [ Links ]

Fiorenza, S. y Rifai, H. (2003). Review of MTBE biodegradation and bioremediation. Bioremediation Journal 7, 1–35.         [ Links ]

Focht, D. D. y Alexander, M. (1970). Bacterial degradation of diphenylmethane, a DDT model substrate. Applied Microbiology 20, 608–611.         [ Links ]

Frascari, D., Kim, Y., Dolan, M. y Semprini, L. (2003). A kinetics study of aerobic propane uptake and cometabolic degradation of chloroform, cis–dicholorethylene and trichloroethylene in microcosms with groundwater/aquifer solids. Water Science Soil Pollution 3, 285–298.         [ Links ]

Fritsche, J.D. (1985). Nature and significance of Microbial cometabolism of xenobiotics. Journal of Basic Bacteriology 25, 603–619.         [ Links ]

Furukawa, K., Tomikuza, N. y Kamibayashi, A. (1979). Effect of chlorine substitution on the bacterial metabolism of various polychlorinated biphenyls. Applied and Environmental Microbiology 38, 301–310.         [ Links ]

Girbal, L., Hilaire, D., Leduc, S., Delery, L., Rols, J. y Lindley, L. (2000). Reductive cleavage of Demeton–S–Methyl by Corynebacterium glatamicum in cometabolism of more readily metabolizable substrate. Applied and Environmental Microbiology 66, 1202–1204.         [ Links ]

Gupta, M., Suidan, M. y Sayles, G. (1996). Modeling kinetics of chloroform cometabolism in methanogenic and sulfate–reducing environments. Water Science Technology 34, 403–410.         [ Links ]

Hao O.J., Kim, M.H., Seagren, E.A. y Kim, H. (2002). Kinetics of phenol and chlorophenol utilization by Acinetobacter species. Chemosphere 46, 797–807.         [ Links ]

Hardison, L.K., Curry, S.S. Ciuffetti, L.M. y Hymann, M.R. (1997). Metabolism of diethyl ether and cometabolism of methyl ter–butyl ether by a filamentous fungus, a Graphium sp. Applied and Environmental Microbiology 63, 3059–3067.         [ Links ]

Hay, A.G. y Focht, D.D. (1998). Cometabolism of 1,1–dichloro–2,2–bis(4–chlorophenyl)ethylene by Pseudomonas acidovorans M3Gy grown on biphenyl. Applied and Environmental Microbiology 64, 2141–2146.         [ Links ]

Heitkamp, M.A. y Cernigilia, C.E. (1988). Mineralization of Polycyclic aromatic hydrocarbons by a bacterium isolated from sediment below an oil field. Applied and Environmental Microbiology 54, 1612:1614.         [ Links ]

Ho, Y., Jackson, M., Yang, Y., Mueller, J.G., Pritchard, P.H. (2000). Characterization of fluoranthene– and pyrene–degrading bacteria isolated from PAH–contaminated soils and sediments. Journal of Industrial Microbiology and Biotechnology 24, 110–112.         [ Links ]

Hori, K., Mii, J., Morono, Y., Tanji, Y. y Unno, H. (2005). Kinetic analyses of trichloroethylene cometabolism by toluene–degrading bacteria harboring a tod homologous gene. Biochemical Engineering Journal 26, 59–64.         [ Links ]

Huessemann M.H. (1997). Incomplete hydrocarbon biodegradation in contaminated soils: limitations in bioavailability or inherent recalcitrance? Bioremediation Journal 1, 2739.         [ Links ]

Hyman, M.R. Murton, I.B. y Arp, D.J. (1988). Interaction of ammonia monooxygenase from Nitrosomonas europaea with alkanes, alkenes and alkynes. Applied and Environmental Microbiology 54, 3187–3190.         [ Links ]

Hyman, M., Russell, A., Ely, R., Williamson, K. y Arp, D. (1995). Inhibition, inactivation and recovery of ammonia–oxidizing activity in cometabolism of trichloroethylene by Nitrosomonas europaea. Biotechnology Bioengineering 61, 1480–1487.         [ Links ]

Jamison, V. W., Raymond, R. L. y Hudson, J. 0. (1969). Microbial hydrocarbon co–oxidation. III. Isolation and characterization of an α,α'–dimethyl–cis,cis–muconic acid–producing strain of Nocardia corallina. Applied Microbiology 17, 853–856.         [ Links ]

Janke, D. y Fristche, W. (1985). Nature and significance of Microbial cometabolism of xenobiotics. Journal of Basic Microbiology 25, 603–61        [ Links ]

Jitnuyanont, P., Sayavedra–Soto, L. y Semprini, L. (2001). Bioaugmentation of butane–utilizing microorganisms to promote cometabolism of 1,1,1–trichloroethane in groundwater microcosms. Biodegradation 12, 11–22.         [ Links ]

Jiménez, I. y Bartha, R. (1996). Solvent–augmented mineralization of pyrene by a Mycobacterium sp. Applied and Environmental Microbiology 31, 2311–2316.         [ Links ]

Johnson, E., Smith, C., O'Reilly, K., y Hyman, M. (2004). Induction of methyl tertiary butyl ether (MTBE)–Oxidizing Activity in Mycobacterium vaccae JOB5 by MTBE. Applied and Environmental Microbiology 70, 1023–1030.         [ Links ]

Kanaly, R.A. y Bartha R. (1999). Cometabolic mineralization of benzo [a]pyrene caused by hydrocarbon additions to soil. Environmental and Toxicology Chemistry 18, 2186–2190.         [ Links ]

Kane, S.R., Chakicherla, A.Y., Chain, P.S., Schmidt, R., Shin, M., Legler, T., Scow, K., Larimer, F., Lucas, S.M., Richardson, P.M. y Hristova, K.R. (2007). Whole–Genome Analysis of the Methyl tert–Butyl Ether–Degrading Beta–Proteobacterium Methylibium petroleiphilum de Ingeniería Química Vol. 7, No. 1 (2008) 1–12 PM1. Journal of Bacteriology 189 , 1931–1945.         [ Links ]

Kim, Y., Semprini, L. y Arp D.J. (1997). Aerobic cometabolism of chloroform and 1,1,1–trichloroethane by butane–grown microorganisms. Bioremediation Journal 2, 135–148.         [ Links ]

Kim, Y., Arp D.J. y Semprini, L. (2002a). A combined method for determining inhibition type, kinetic parameters, and inhibition coefficients for aerobic cometabolism of 1,1,1–trichloroethane by a butane–grown mixed culture. Biotechnology and Bioengineering 77, 569–576.         [ Links ]

Kim, Y., Arp D.J. y Semprini, L. (2002b). Kinetic and inhibition studies for the aerobic cometabolism of 1,1,1–trichloroethane, 1,1–dichloroethylene, and 1,1–dichloroethane by a butane–grown mixed culture. Biotechnology and Bioengineering 80, 498–508.         [ Links ]

Kim, M., Hao, O. (1999). Cometabolic degradation of chlorophenols by Acinetobacter species. Water Research 33, 562–574.         [ Links ]

Kim, Y., Istok, J.D., y Semprini, L. (2004). Push–pull tests for assessing in situ aerobic cometabolism. Ground Water 42, 329–337.         [ Links ]

Koler, H.P., Koler–Stabu, D. y Focht, D. (1988). Cometabolism of polychlorinated biphenyls: enhanced transformation Arochlor 1254 by growing bacterial cells. Applied and Environmental Microbiology 54, 1940–1945.         [ Links ]

Kou, M., Liang, K., Han, Y. y Fan, K. (2004). Pilot studies for in–situ aerobic cometabolism of trichloroethylene using toluene–vapor as the primary substrate. Water Research 38, 4125-4134.         [ Links ]

Leadbetter, E.R. y Foster, J.W. (1959). Oxidation products formed from gaseous alkanes by the bacterium Pseudomonas methanica. Archives of Biochemistry and Biophysics 82, 491–492.         [ Links ]

Liu, C., Speitel, G., y Georgiou, G. (2001). Kinetics of methyl t–buthyl ether cometabolism at low concentrations by pure culture of butane–degrading bacteria. Applied and Environmental Microbiology 57, 2197–2201        [ Links ]

Lontoh, S y Semrau, H. (1998). Methane and trichloroethylene degradation by Methylosinus trichosporium OB3b expressing particulate methane monooxygenase. Applied and Environmental Microbiology 64, 1106-1114.         [ Links ]

Mysona, E S, y Hughes, W D. (2003). Field–scale remediation of PCE and TCE in ground water using air sparging and propane injection. Third International Conference on Remediation of Chlorinated and Recalcitrant Compounds; Monterey, CA; USA.         [ Links ]

Nelson, M., Montgomery, O., O'Neill y Pritchard. (1986). Aerobic metabolism of trichloroethylene by a bacterial isolate. Applied and Environmental Microbiology 52, 383–384.         [ Links ]

Ortiz I., Auria R., Sigoillot J.C., Revah, S. (2003) Enhancing phenanthrene bio–mineralization in a polluted soil using gaseous toluene as a cosubstrate. Environmental Science Technology 37, 805– 810.         [ Links ]

Ortiz, I., Velasco, J.A., Revah, S. (2006) Effect of toluene as cosubstrate in bioremediation of hydrocarbon–polluted soil. Journal of Hazardous Materials 131, 112–117.         [ Links ]

Perry J.J. (1979). Microbial cooxidations involving hydrocarbons. Microbiology Reviews 43, 5972.         [ Links ]

Prenafeta–Boldú, F.X., Vervoort, J., Grotenhuis, J.T. y Groenestijn. (2002). Substrate interaction during the biodegradation of benzene, toluene, ethylbenzene, and xylene (BTEX) hydrocarbons and the fungus Cladophialophora sp. Strain T1. Applied and Environmental Microbiology 68, 2660–2665.         [ Links ]

Ryoo, D., Shim, H., Arenghi, P., Barbieri, P. y Wood, T. (2001). Tetrachloroethylene, trichloroethylene, and chlorinated phenols induce toluene– o–xylene monooxygenase activity in Pseudomonas stutzeri OX1. Applied Microbiology Biotechnology 56, 545-549.         [ Links ]

Saftic, S., Fedorak, P.M. y Anderson, J.T. (1992). Diones, sulfoxides and sulfones from the aerobic cometabolism of methylbenzothiophenes by Pseudomonas strain BT1. Environmental and Science Technology 26, 1759–1764.         [ Links ]

Schwarzenbach R.P., Gschwend P.M. e Imboden D.M. (1993). Biological transformations reactions. En: Environmental Organic Chemistry. pp. 491–494. Wiley–Interscience Publication. E.E.U.A.         [ Links ]

Shingleton, J., Applegate, B., Baker, A. Sayler, G. y Bienkowski, P. (2001). Quantification of toluene dioxygenase induction and kinetic modeling of TCE cometabolism by Pseudomonas putida TVA. Biotechnology and Bioengineering 76, 341–380.         [ Links ]

Smith, L., McCarty, P. y Kitanidis, P. (1998). Spreadsheet method for evaluation for biochemical reaction rate coefficients and their uncertainties by weighted nonlinear least–squares analysis of integrated Monod Equation. Applied and Environmental Microbiology 64, 2044–2050.         [ Links ]

Smith, L., Reylli, K.T., y Hyman, M.R. (2003). Characterization of the initial reactions during the cometabolic oxidation of Methyl ter–butyl ether by propane–grown Mycobacterium vaccae JOB5. Applied and Environmental Microbiology 69, 796–804.         [ Links ]

Solano–Serena, F. Marchal, R. Vandecasteele, J.P. (2001) Biodegradation of Gasoline in the Environment: From Overall Assessment to the Case of Recalcitrant Hydrocarbons. Oil and Gas Science and Technology 56, 479-498.         [ Links ]

Steffan, R. J., McClay, K., Vainberg, S., Condee, C. W. y Zhang, D. (1997). Biodegradation of the gasoline oxygenates methyl terttert–butyl ether, ethyl terttert–butyl ether, and terttert–amyl methyl ether by propane–oxidizing bacteria. Applied and Environmental Microbiology 63, 4216–4222.         [ Links ]

Sun, A.K., y Wood T.K. (1997). Trichloroethylene mineralization in a fixed–film bioreactor using a pure culture expressing constitutively toluene ortho–monooxygenase. Biotechnology and Bioengineering 55, 674–685.         [ Links ]

Uchio, R. y Shiio, I. (1972). Tetradecane 1,14–dicarboxylic acid production from n–hexadecane by Candida cloacae. Agriculture and Biological Chemistry 36, 1389–1397.         [ Links ]

Verce, M., Gunsch, A., Danko, A. y Freedman, D. (2002) . Cometabolism of cis–1,2–dicloroethene by aerobic cultures grown on vinyl chloride as primary substrate. Environmental and Science Technology 36, 2171–2177.         [ Links ]

Verce, M.F., Freedman, D. (2001). Modeling the kinetics of vinyl chloride cometabolism by an ethane–grown Pseudomonas sp. Biotechnology and Bioengineering 71, 274-285.         [ Links ]

Verce, M., Ulrich, R.y Freedman, D. (2001). Transition from Cometabolic to Growth–Linked Biodegradation of Vinyl Chloride by a Pseudomonas sp. Isolated on Ethene. Environmental Science Technology 35,4242-4251.         [ Links ]

Wang, S–J. y Loh, K–Ch. (2000). Growth kinetics of Pseudomonas putida in cometabolism of phenol and 4–chlorophenol in the presence of a conventional carbon source. Biotechnology and Bioengineering 68, 437–447.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons