SciELO - Scientific Electronic Library Online

 
vol.6 issue3Biosorption of Pb (II) by Agave tequilana Weber (agave azul) biomassImbibition kinetics and moisture sorption isotherms of roselle seeds (Hibiscus sabdariffa L.) author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Revista mexicana de ingeniería química

Print version ISSN 1665-2738

Rev. Mex. Ing. Quím vol.6 n.3 México Dec. 2007

 

Ingeniería ambiental

 

Ammonia and nitrite removal rates in a closed recirculating–water system, under three load rates of rainbow trout Oncorhynchus mykiss

 

Tasas de remoción de amoniaco y nitrito en un sistema cerrado de recirculación de agua, bajo tres cargas de trucha arco iris Oncorhynchus mykiss

 

J. L. Arredondo–Figueroa 1*, G. Ingle de la Mora2, I. Guerrero–Legarreta3, J. T. Ponce–Palafox4 and I. de los A. Barriga–Sosa1

 

1 Planta Experimental de Producción Acuícola, Departamento de Hidrobiología, y Departamento de Biotecnología, CBS, Universidad Autónoma Metropolitana–Iztapalapa, Mexico. Av. Michoacán y La Purísima s/n, Col. Vicentina, Iztapalapa. Apartado Postal 55–535, México 09340 D.F. * Corresponding author: E–mail: afjl@xanum.uam.mx Phone (55) 58046585. Fax: (55) 58044737

2 Instituto Nacional de la Pesca, Secretaría de Agricultura, Recursos Hidráulicos, Pesca y Alimentación (SEMARNAP), México, D.F. Pitágoras 1320, Colonia Santa Cruz Atoyac, Mexico 03310, D.F., Mexico.

3 Planta Experimental de Producción Acuícola, Departamento de Hidrobiología, y Departamento de Biotecnología, CBS, Universidad Autónoma Metropolitana–Iztapalapa, Mexico. Av. Michoacán y La Purísima s/n, Col. Vicentina, Iztapalapa. Apartado Postal 55–535, México 09340 D.F.

4 Laboratorio de Bioingeniería Acuícola, Centro de Investigaciones Biológicas, Universidad Autónoma del Estado de Morelos, Apartado Postal 584, Ciudad Universitaria, Cuernavaca 62001, Cuernavaca Morelos, Mexico.

 

Received 9th February 2007
Accepted 20th November 2007

 

Abstract

Nitrification and denitrification rates of inorganic nitrogen were studied in a closed recirculating–water system, comparing three load rates of rainbow trout Oncorhynchus mykiss (89, 156 and 194 kg in each tank with two repetitions). Six self–cleaning water circular fish tanks with a volume of 4.3 m3 were used, maintaining a 3.94 m3/day of average flow rate and constant aeration. A total of 371 rainbow trout, 524 ± 8 g initial wet weight were introduced in the system and fed with a commercial feed that contained 38% of protein. A total study time of 44 days was divided into three phases of 14, 17 and 13 days according to the load fish rate. Temperature, dissolved oxygen, pH, total ammonia nitrogen (TAN), un–ionized ammonia, nitrite and nitrate were daily evaluated at four monitoring sites: fish tank (FT), settling tank (ST), biofilter (B) and reconditioning tank (RT). Water physicochemical characteristics and their fluctuations played an important role in treatment efficiency. Water temperature varied between 18 °C and 20.5 °C and dissolved oxygen from 4.6 to 7.7 mg/l. The lowest values of these two variables were registered in the ST where all wastes accumulate. No significant differences (p<0.05) were observed in pH values (8.3–8.6). These conditions allowed good nitrification and denitrification rates. TAN varied from 0.2 to 1.96 mg/l; however, this value was 80% lower in the outlet (RT) as compared to the inlet (ST). The load fish rate caused a significant difference (p<0.05) in TAN and non–ionized ammonia in the FT with the lowest value for 89 kg load density as compared to 156 and 194 kg respectively. Conversely, nitrite concentration did not show a significant difference (p>0.05) among load fish rate. Nitrate concentration had an accumulative tendency at 156 kg load rate batch up to 30 days with a further decrease. The results showed that a reduction of load rate did not change apparently the equilibrium of bacteria population. Therefore, it is possible to control variables such as TAN, non–ionized ammonia and nitrite concentration, hence maintaining an adequate water quality for rainbow trout.

Keywords: closed recirculating system, denitrification, load density, nitrification rate, rainbow trout.

 

Resumen

Se estudiaron las tasas de nitrificación y desnitrificación del nitrógeno inorgánico, en un sistema cerrado de recirculación de agua, comparando tres cargas de biomasa de trucha arco iris Oncorhynchus mykiss (89, 156 y 194 kg por estanque con dos repeticiones). Se utilizaron seis estanques circulares de autolimpieza con volumen de 4.3 m3 de volumen, con un flujo promedio diario total de agua de 10.93 m3 y aireación constante. Un total de 371 truchas arco iris con peso inicial de 524 ± 8 g fueron introducidas en el sistema y alimentadas con alimento balanceado, que contenía 38% de proteína. El estudio duró 44 días continuos, divididos en tres fases de 14, 17 y 13 días respectivamente, de acuerdo con la carga de biomasa de peces. La temperatura, oxígeno disuelto, pH, nitrógeno amoniacal total (NAT), amoniaco, nitrito y nitrato fueron evaluados diariamente en cuatro sitios de monitoreo: estanque de peces (EP), estanque de sedimentación (ES), biofiltro I (BI) y estanque de reacondicionamiento (ER). Las características fisicoquímicas del agua y la fluctuación de los parámetros jugaron un importante papel en la eficiencia del tratamiento. La temperatura del agua varió de 18 °C a 20.5 °C y el oxígeno disuelto de 4.6 a 7.7 mg/l. Los valores más bajos de estas dos variables fueron registrados en el ST donde los desechos se acumulan. No se observaron diferencias significativas (p<0.05) en los valores de pH (8.3–8.6). Estas condiciones permitieron una buena tasa de nitrificación y desnitrificación. El NAT varió de 0.2 a 1.96 mg/l, sin embargo, este valor fue 80% más bajo en la salida (ET) comparada con la entrada al sistema (ES). La carga de biomasa de peces causó una diferencia significativa (p<0.05) en los valores de NAT y amoniaco en el EP, con los valores más bajos para 89 kg, comparado con 156 y 194 kg respectivamente. Por su parte la concentración del nitrito no mostró diferencias significativas (p>0.05) entre las diferentes cargas. Las concentraciones de nitrato tuvieron una tendencia acumulativa a 156 kg hasta los 30 días con un rápido decremento. Los resultados mostraron que la reducción de la carga de biomasa de peces, no cambia aparentemente el equilibrio de la población bacteriana del biofiltro. Además, es posible controlar las variables como el NAT, el amoniaco y la concentración de nitrito, manteniendo una adecuada calidad del agua para la trucha arco iris.

Palabras clave: sistema de recirculación, desnitrificación, carga de peces, tasa de nitrificación, trucha arco iris.

 

DESCARGAR ARTÍCULOS EN FORMATO PDF

 

References

Alabaster, J. S., Shurben, D. G: and Mallett, M. J. (1979). The effect of dissolved oxygen and salinity on the toxicity of ammonia to smolts of salmon. Salmo salar L. Journal of Fish Biology 15, 705–712.         [ Links ]

Arredondo–Figueroa, J. L. and Lozano–Gracia, S. D. (1994). Water quality and yields in a polyculture of non–native cyprinids in Mexico. Hidrobiológica 4(1–2), 1–8.         [ Links ]

Arredondo–Figueroa, J. L., Valdivia–Soto, R. H., Hernández–Lastiri, L. y Campos–Verduzco, R. (1996). Evaluación del crecimiento, factor de conversión de alimento y calidad del agua del cultivo de trucha arco iris (Oncorhynchus mykiss) en un sistema cerrado. Hidrobiológica 6(1–2), 59–65.         [ Links ]

Avnimelech, Y. and Lacher, M. (1979). A tentative nutrient balance for intensive fish ponds. Bamidgeh 31, 3–8.         [ Links ]

Burrows, R. E. (1964). Effects of accumulated excretory products on hatchery–reared salmonids. U.S. Bur. Sport Fish. Wildl. Res. Rep. 66.         [ Links ]

Burrows, R. E. and Combs, B. D. (1968). Controlled environment for salmon propagation. Progressive Fish–Culturist 30, 123–136.         [ Links ]

Burkhalter D. F., and Kaya, C. M. (1977). Effects of prolonged exposure trout. Transaction of the American Fishery Society 106(5), 470–475         [ Links ]

Campbell J. W., (1973). Nitrogen excretion. In: Comparative animal physiology. (U. L. Prosset, ed.), Pp. 279–346. W B Saunders, Philadelphia. USA.         [ Links ]

Chen, S., Ling, J., and Blancheton, J. P. (2006). Nitrification kinetics of biofilm as affected by water quality factors. Aquaculture Engineering 34, 179–197.         [ Links ]

Chiang, H. C. and Lee, J. C. (1986). Study of treatment and reuse of aquacultural waster in Taiwan. Aquacultural Engineering 5, 301-312.         [ Links ]

Colt, J. E. and Amstrong, D. A. (1981). Nitrogen toxicity to fish, crustaceans and mollusks. In: Proceedings of the bioengineering symposium for fish culture. (American Fisheries Society, Fish Culture Section, ed.), Pp. 39–41. Bethesda, Maryland, USA.         [ Links ]

Colt, J. (2006). Water quality requirements for reuse systems. Aquaculture Engineering 34, 143-156.         [ Links ]

Crab, R., Avinimelech, Y., Defoirdt, T., Bossier, P., and Verstraete, W. (2007). Nitrogen removal techniques in aquaculture for the sustainable production. Aquaculture 270, 1–14.         [ Links ]

Craig, S. R., Hatch, S. J. and Holt, G. J. (1990). Biological filter for conical tanks. Progressive Fish–Culturist 52, 61–62.         [ Links ]

DeWitt, J. W., and Saloa, E. A. (1960). An experiment with the complete recirculation of water. Progressive Fish–Culturist 22, 3–6.         [ Links ]

Emerson, K., Russo, C. R., Lund, E. R. and Thurston, V. R. (1975). Aqueous ammonia equilibrium calculations: effects of pH and temperature. Journal of Fisheries Research Board of Canada 32, 2379–2383.         [ Links ]

Franco–Nava, M. A., Blancheton, J. P., Deviller, G., Charrier, A., and Le–Gall, J. Y. (2004). Effect of fish size and hydraulic regime on particulate organic matter dynamics in a recirculating aquaculture system: elemental carbon and nitrogen approach. Aquaculture 239, 179–198.         [ Links ]

Gutierrez–Wing, M. T., and Malone, R.F. (2006). Biological filters in aquaculture: trends and research directions for freshwater and marine applications. Aquaculture Engineering 34, 163–171.         [ Links ]

Heinsbroek, L. T. and Kamstra, N. A. (1990). Design and Performance of Water Recirculation Systems for Culture. Aquacultural Engineering 9, 187–207.         [ Links ]

Jaffe, E. R. (1964). Metabolic processes involved in the formation and reduction of methemoglobin in human erythrocytes. In: The red blood cell, (C. Bishop and D. Surgenor, eds.), Pp. 397–422. Academic Press, New York.         [ Links ]

Kawai, A. Yoshida, Y. and Kimata, M. (1965). Biochemical studies on the bacteria in aquarium with circulating system–II. Nitrifying activity of the filter–sand. Bulletin of the Japan Society of Science Fisheries 31, 65–71.         [ Links ]

Klontz, W. G. (1991). Fish for the Future: Concepts and Methods of Intensive Aquaculture. Text Number 5. The Idaho Forest, Wild–Life and Range Experiment Station, Collage of Forestry, Wildlife and Range Sciences, University of Idaho, Moscow, Idaho.         [ Links ]

Körner, S., Das, S. K., Veenstra, S., and Vermaat, J. E. (2001). The effect of pH variation at the ammonium/ammonia equilibrium in wastewater and its toxicity to Lemna gibba. Aquatic Botany 71, 71–78.         [ Links ]

Kruner, G. and Rosenthal, H. (1987). Circadian periodicity of biological oxidation under three different operational conditions. Aquaculture Engineering, 79–95.         [ Links ]

Liao, P. B., and Mayo, R. D. (1974). Intensified fish culture combining water reconditioning with pollution abatement. Aquaculture 3; 61–85.         [ Links ]

Ling, J., and Chen, S. (2005). Impact of organic carbon on nitrification performance of different biofilters. Aquaculture Engineering 33, 150–162.         [ Links ]

Leitritz, E. and Lewis, R. C. (1976). Trout and salmon culture: hatchery methods. California Department of Fish and Game. Fish Bulletin 164.         [ Links ]

Lucchetti, G. L. and Gray, G. A. (1988). Prototype water reuse system. Progressive Fish–Culturist 50, 46–49.         [ Links ]

Malone, R. F., and Pfeiffer, T. J. (2006). Relating fixed film nitrifying biofilters used in recirculating aquaculture systems. Aquaculture Engineering 34, 389–402.         [ Links ]

Marking, L. L. and Bills, T. D. (1982). Factors affecting the efficiency of clinoptilolite for removing ammonia. The Progressive Fish–Culturist 44, 187–189.         [ Links ]

Masser, P. M., Rakocy, J. and Losordo, M. T. (1992). Recirculating aquaculture tank production system. Management of recirculating systems. SRAC Publications No. 452: 12 p.         [ Links ]

McCrimmon, H. R., and Berst, A. H. (1966). A water recirculation unit for use in fishery laboratories. Progressive Fish–Culturist 28, 165–170.         [ Links ]

Michaud, L., Blancheton, J. P., Bruni, V., and Piedrahita, R. (2006). Effect of particulate organic carbon on heterotrophic bacterial populations and nitrification efficiency in biological filters. Aquaculture Engineering 34, 224–233.         [ Links ]

Millamena, O. M., Casalmir, C. M. and Subosa, P. F. (1991). Performance of recirculating systems for prawn hatchery and broodstock maturation tanks. Aquacultural Engineering 10, 161– 171.         [ Links ]

Neori, A., Chopin, T., Troell, M., Bushmann, A. H., Kraemer, G. P., Halling, C., Shpigel, M., and Yarish, C. (2004). Integrated aquaculture: rationale, evolution and state of the art emphasizing seaweed biofiltration in modem mariculture. Aquaculture 231, 361–391.         [ Links ]

O'Farrel, T. P., Frauson, F. P., Cassel, A. F. and Bishop, D. F. (1972). Nitrogen removal by ammonia stripping. Journal of Water Pollution Control Federation 44, 1527–1535.         [ Links ]

Parker, C. N. and Davis, B. K. (1981). Requirements of warmwater fish. In: Bio–Engineering Symposium for fish culture, (American Fisheries Society, Fish Culture Section, ed.), Pp. 21–28. Betesdha, Maryland, USA.         [ Links ]

Piedrahita, R.H. (2003). Reducing the potential environmental impact of tank aquaculture effluents through intensification and recirculation. Aquaculture 226, 35–44.         [ Links ]

Rjin, J., Stutz, S., Diab, S. and Shilo, M. (1986). Chemical, physical and biological parameters of superintensive concrete fish ponds. Bamidgeh 38(2), 35–43.         [ Links ]

Rjin, J. and Rivera, G. (1990). Aerobic and anaerobic biofiltration in an aquaculture unit– nitrite accumulation as a result of nitrification and denitrification. Aquacultural Engineering 9, 217–234.         [ Links ]

Saeki, A. (1963). The composition and some chemical control of the sea water of the closed circulation aquarium. Bulletin of the Marine Biology Station. Asamushi, Tohoku University 11, 99–104.         [ Links ]

Sato, H., Okabe, N., and Watanabe, Y. (2000). Significance of substrate C/N ratio on structure and activity of nitrifying biofilm determined by in situ hybridization and the use of microelectrodes. Water Science Technology 41, 317–321.         [ Links ]

Scherer, E., Scott, K. R., and Nowak, S. H. (1977). A modular large scale laboratory system to acclimate and test aquatic organisms. Canadian Fisheries Marine Services Technical Report 728.         [ Links ]

Scott, K. R., and Allard, L. (1983). High–flow rate water recirculation system incorporating a hydrocyclone prefilter for the rearing fish. Progressive Fish– Culturist 45,148–153.         [ Links ]

Scott, K. R., and Gillespie, D. C. (1972). A compact recirculation unit for rearing and maintenance of fish. Journal Fishery Research Board of Canada 29, 1071–1074.         [ Links ]

Smart, G. R. (1976). The effect of ammonia exposure on the gill structure of the rainbow trout (Salmo gairdneri R.) Journal of Fish Biology 8(6), 474–475.         [ Links ]

Smart, G. R., Knox, D., Harrison, J. G., Ralph, J. A., Richards, R. H. and Cowey, C. B. (1978). Nephrocalcinosis in rainbow trout Salmo gairdneri Richardson; the effect of exposure to elevated CO2 concentrations. Journal of Fish Diseases 2, 279–289.         [ Links ]

Smith, C. E., and Piper, R. G. (1975). Effects of metabolic products on the quality of rainbow trout. Bozeman Information Leaflet No. 4, Fish Cultural Development Center, Bozeman, M. T. 10 pp.         [ Links ]

Spotte, S. (1979). Fish and invertebrate culture: water management in closed system. 2nd. Edition, Wiley Interscience, New York.         [ Links ]

Srna, R. F. and Baggaley, A. (1975). Kinetic response of perturbed marine nitrification systems. Journal of Water Pollution Control Federation 47, 427–486.         [ Links ]

Wild, H. E., Sawyer, C. N. and McMahan, T. C. (1971). Factors affecting nitrification kinetics. Journal of Water Pollution Control Federation 43, 1845–1854.         [ Links ]

Yang, L. (1997). Investigation of nitrification by co–immobilized nitrifying bacteria and zeolite in a batchwise fluidized bed. Water Science and Technology 35, 169–175.         [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License