SciELO - Scientific Electronic Library Online

vol.6 issue3Analysis of mass transport and reaction problems using green's functionsAmmonia and nitrite removal rates in a closed recirculating-water system, under three load rates of rainbow trout Oncorhynchus mykiss author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand




Related links

  • Have no similar articlesSimilars in SciELO


Revista mexicana de ingeniería química

Print version ISSN 1665-2738

Rev. Mex. Ing. Quím vol.6 n.3 México Dec. 2007


Ingeniería ambiental


Biosorption of Pb (II) by Agave tequilana Weber (agave azul) biomass


Biosorpción de Pb (II) por biomasa de Agave tequilana Weber (agave azul)


J. Romero–González1*, F. Parra–Vargas2, I. Cano–Rodríguez2, E. Rodríguez1, J. Ríos–Arana1, R. Fuentes–Hernández2 and J. Ramírez–Flores2


1 Universidad Autónoma de Cd. Juárez, Instituto de Ingeniería y Tecnología, Av. Del Charro No. 610 Norte, Cd. Juárez Chihuahua, 32310, México. * Corresponding author: E–mail: Phone and fax: (656) 688–1885

2 Universidad de Guanajuato, Departamento de Ingeniería Química, Noria Alta S/N, Guanajuato, Guanajuato, 36000, México.


Recibido 22 de Junio 2006
Aceptado 16 de Julio 2007



In this study, the biomass produced from the industrial residues and agricultural waste of Agave tequilana Weber (Agave azul) generated in the production of tequila, demonstrated a high potential for Pb (II) removal from aqueous solution. The biosorption capacity of Agave azul leaves biomass was evaluated in batch experiments. These experiments included pH profile, time dependence, and the determination of adsorption capacity. Time profile experiments indicated that the adsorption of Pb ions by Agave azul biomass was time–dependent. Freundlich and Langmuir isotherms were used to describe the biosorption of Pb (II) onto the Agave azul leaves biomass at 298 K and pH 5.0. The correlation coefficient for the Freundlich isotherm was much higher than the coefficient for the Langmuir isotherm, indicating that only the Freundlich models fits the data. The maximum capacity (KF) was 105.52 10–2 mole/g for Pb (II). The adsorption capacity showed by Agave azul biomass was higher than the average values reported in the literature.

Keywords: biosorption, Pb(II), Agave tequilana Weber, Agave azul.



En este estudio, la biomasa producida de los residuos industriales y el desecho agrícola del Agave tequilana Weber (Agave azul) generados en la producción de tequila, demostró un alto potencial para la remoción de Pb (II) de soluciones acuosas. La capacidad de biosorción de la biomasa de las hojas de Agave azul fue evaluada en experimentos en lote. Estos experimentos incluyeron perfil de pH, dependencia del tiempo y la determinación de la capacidad de adsorción. Los experimentos de dependencia del tiempo indicaron que la adsorción de los iones de Pb(II) por la biomasa de Agave azul fue dependiente del tiempo. Las isotermas de Freundlich y Langmuir fueron usadas para describir la biosorción del Pb (II) sobre la biomasa de las hojas del Agave azul a 298 K y un pH de 5.0. El coeficiente de correlación para la isoterma de Freundlich fue más alto que el respectivo coeficiente para la isoterma de Langmuir, indicando que solo el modelo de Freundlich describe los datos obtenidos. La máxima capacidad (KF) fue 105.52 10–2 moles/g para Pb (II). La capacidad de adsorción mostrada por la biomasa del Agave azul fue más alta que el valor promedio de los valores reportados en la literatura.

Palabras clave: biosorción, Pb (II), Agave tequilana Weber, Agave azul.





The authors would like to acknowledge financial support from the University of Guanajuato at México and the Programa de Mejoramiento del Profesorado (PROMEP) (Agreement PROMEP/103.5/04/2921).



Ahluwalia, S.S., Goyal, D. (2005). Removal of heavy metals by waste tea leaves from aqueous solution. Engineering in Life Sciences 5, 158–162.         [ Links ]

Ahluwalia, S.S., Goyal, D. (2006). Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresource Technology In press, Available online.         [ Links ]

Altindag, A., Yigit, S. (2005). Assessment of heavy metal concentrations in the food web of lake Beysehir, Turkey. Chemosphere 60, 552–556.         [ Links ]

Benhammou, A., Yaacoubi, A., Nibou, L., Tanouti, B. (2005). Adsorption of metal ions onto Moroccan stevensite: kinetic and isotherm studies. Journal of Colloid and Interface Science 282, 320–326.         [ Links ]

Chojnacka, K., Chojnacki, A., Gorecka, H. (2005). Biosorption of Cr3+, Cd2+ and Cu2+ ions by blue–green algae Spirulina sp.: kinetics, equilibrium and the mechanism of the process. Chemosphere 59, 75–84.         [ Links ]

Chuah, T.G., Jumasiah, A., Azni, I., Katayon, S., Choong, S.Y.T. (2005). Rice husk as a potentially low–cost biosorbent for heavy metal and dye removal: an overview. Desalination 175, 305–316.         [ Links ]

Contreras, C., de la Rosa, G., Peralta–Videa J.R., Gardea–Torresdey, J.L. (2005). Lead adsorption by silica–immobilized humin under flow and batch conditions: Assessment of flow rate and calcium and magnesium interferente. Journal of Hazardous Materials 133, 79–84.         [ Links ]

Davis, T.A., Volesky, B., Mucci, A. (2003). A review of the biochemistry of heavy metal biosorption by brown algae. Water Research 37, 4311–4330.         [ Links ]

Demirbas, A., Pehlivan, E., Gode, F., Altun, T., Arslan, G. (2005). Adsorption of Cu (II), Zn (II), Ni (II), Pb (II), and Cd (II) from aqueous solution on Amberlite IR–120 synthetic resin Journal of Colloid and Interface Science 282, 20–25.         [ Links ]

Fichet, D., Radenac, G., Miramand, P. (1998) Bioaccumulation and toxicity of four dissolved metals in Paracentrotus lividus sea–urchin embryo. Marine Environmental Research 36, 509–518.         [ Links ]

Gardea–Torresdey, J.L., Tiemann, K., Gonzalez, J.H., Rodríguez, O., Gamez, G. J. (1998). Phytofiltration of hazardous cadmium, chromium, lead and zinc ions by biomass of Medicago sativa (Alfalfa) Journal of Hazardous Materials 57, 29–39.         [ Links ]

Goyal, N., Jain, S.C., Banerjee, U.C. (2003). Comparative studies on the microbial adsorption of heavy metals. Advances in Environmental Research 7, 311–319.         [ Links ]

Ho Y.S, Wase A.J., Forster C.F. (1996). Kinetic studies of competitive heavy metal adsorption by Sphagnum moss peat. Environmental Technology 17, 71–77.         [ Links ]

Ho Y.S., McKay G. (1999). Pseudo–second order model for sorption processes. Process Biochemistry 34, 451–465.         [ Links ]

Kar, P., Misra, M. (2004). Use of keratin fiber for separation of heavy metals from water. Journal of Chemical Technology and Biotechnology 79, 1313–1319.         [ Links ]

Krishna, B.S., Murty, D.S.R., Jai Prakash, B.S. (2000) Thermodynamics of Chromium (VI) Anionic Species Sorption onto Surfactant–Modified Montmorillonite Clay.Journal of Colloid and Interface Science 229, 230–236.         [ Links ]

Lin, S.H., Juang, R.S. (2002). Heavy metal removal from water by sorption using surfactant–modified montmorillonite. Journal of Hazardous Materials 92, 315–326.         [ Links ]

Martínez, M., Miralles, N., Hidalgo, S., Fiol, N., Villaescusa, I., Poch, J., (2000). Removal of lead(II) and cadmium(II) from aqueous solutions using grape stalk waste. Journal of Hazardous Materials 133, 203–211.         [ Links ]

Martínez, O., Özbelge, H.O., Dogu, T. (1998) Use of general purpose adsorption isotherms for heavy metal–clay mineral interactions. Journal of Colloid and Interface Science 198, 130–140.         [ Links ]

Romero–Gonzalez, J., Peralta–Videa, J.R., Rodriguez, E., Ramirez, S.L., Gardea–Torresdey, J.L. (2005a). Determination of thermodynamic parameters of Cr (VI) adsorption from aqueous solution onto Agave lechuguilla biomasa. The Journal of Chemical Thermodynamics 37, 343–347.         [ Links ]

Romero–González J., Gardea–Torresdey, J.L., Peralta–Videa, J.R., Rodriguez, E. (2005b) Determining the equilibrium and kinetic parameters of the Cr(VI) and Cr(III) adsorption from aqueous solutions by Agave lechuguilla biomass. Bioinorganic Chemistry and Applications 3, 55–68.         [ Links ]

Sawalha, M.F., Gardea–Torresdey, J.L., Parsons, J.G., Saupe, G., Peralta–Videa, J.R. (2005) Determination of adsorption and speciation of chromium species by saltbush (Atriplex canescens) biomass using a combination of XAS and ICP–OES. Microchemical Journal 81, 122–132.         [ Links ]

Tylko, G., Banach, Z., Borowska, J., Niklinska, M., Pyza, E. (2005). Elemental changes in the brain, muscle, and gut cells of the housefly, Musca domestica, exposed to heavy metals. Microscopy Research and Technique 66, 239-247.         [ Links ]

Volesky, B. (2001). Detoxification of metal–bearing effluents: biosorption for the next century. Hydrometallurgy 59, 203–216.         [ Links ]

Volesky, B., (2003). Biosorption process simulation tools. Hydrometallurgy 71, 179–190.         [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License