SciELO - Scientific Electronic Library Online

 
vol.6 issue3Cell suspension culture of Azadirachta indica for production of a bioinsecticideFungal production of the red pigment using a xerophilic strain Penicillium purpurogenum GH-2 author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Revista mexicana de ingeniería química

Print version ISSN 1665-2738

Rev. Mex. Ing. Quím vol.6 n.3 Ciudad de México Dec. 2007

 

Biotecnología

 

L–arabinose production by hidrolysis of mesquite gum by a crude extract with α–L–arabinofuranosidase activity from Aspergillus niger

 

Producción de L–arabinosa a partir de la hidrólisis de la goma de mezquite por un extracto crudo con actividad α–L–arabinofuranosidasa de Aspergillus niger

 

J. M. Loeza–Corte1, J. R. Verde–Calvo1, F. Cruz–Sosa1, E. J. Vernon–Carter2 and S. Huerta–Ochoa1*

 

1 Planta Piloto de Fermentaciones, Departamento de Biotecnología, Universidad Autónoma Metropolitana Iztapalapa. San Rafael Atlixco 186 Col. Vicentina, C.P. 09340, México D.F., México. * Corresponding author: E–mail: sho@xanum.uam.mx Phone (+52) 5558044999, fax: (+52) 5558044712

2 Laboratorio de Bioprocesos, Departamento de Ingeniería de Procesos e Hidráulica, Universidad Autónoma Metropolitana Iztapalapa. San Rafael Atlixco 186 Col. Vicentina. C.P. 09340, México D.F., México.

 

Received 25th, April 2007
Accepted 11th, October 2007

 

Abstract

A crude enzymatic extract from Aspergillus niger 10 with α–L–arabinofuranosidase activity (EC 3.2.1.55) was obtained and its effect on the hydrolysis of mesquite gum was determined and compared to that of a commercial α–L–arabinofuranosidase from A. niger. The growth parameters of A. niger 10 obtained were Xmax = 3.03 g L–1 and μmax = 0.07 h–1. The maximum enzymatic activity obtained was 65.93 U L–1. Optimum temperature and activation energy for the crude extract were 50°C and 46.15 KJ mol–1 and for the commercial enzyme 40 °C and 52.76 KJ mol–1, respectively. The apparent kinetic parameters Km and Vmax for the crude extract were 4.87 g L–1 and 0.15 μmol min–1 g–1, and for the commercial enzyme 76.45 g L–1 and 3.85 /mol min–1 g–1, respectively. Yields of L–arabinose recovery for the crude extract and the commercial enzyme were 17.04 % and 2.78 %, respectively, based on the reported average content of L–arabinose in mesquite gum.

Keywords: α–L–arabinofuranosidase, Aspergillus niger, mesquite gum, L–arabinose, enzymatic hydrolysis.

 

Resumen

Se obtuvo un extracto enzimático crudo a partir de Aspergillus niger 10 con actividad α–L–arabinofuranosidasa (EC 3.2.1.55) y fue comparado con una α–L–arabinofuranosidasa comercial sobre la hidrólisis enzimática de la goma de mezquite. Los parámetros de crecimiento obtenidos para A. niger 10 fueron: Xmax = 3.03 g L–1 y μmax = 0.07 h–1. La máxima actividad enzimática obtenida fue 65.93 U L–1. La temperatura óptima y energía de activación para el extracto crudo fueron de 50°C y 46.15 KJ mol–1, mientras que para la enzima comercial fueron de 40°C y 52.76 KJ mol–1. Los parámetros cinéticos de la hidrólisis Km–app y Vmax–app con el extracto crudo fueron de 4.87 g L y 0.15 /mol min–1 g–1, y para la enzima comercial fueron de 76.45 g L–1 y 3.85 μmol min–1 g–1, respectivamente. Los rendimientos de L–arabinosa con el extracto crudo y la enzima comercial fueron de 17.04 % y 2.78 %, respectivamente, basados en lo reportado para el contenido promedio de L–arabinosa en la goma de mezquite.

Palabras clave: α–L–arabinofuranosidasa, Aspergillus niger, goma de mezquite, L–arabinosa, hidrólisis enzimática.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

References

Anderson, D.M.W. and Weiping, W. (1989). The characterization of proteinaceous Prosopis (mesquite gums) which are not permitted food additives. Food Hydrocolloids 3, 235–242.         [ Links ]

Buendía–González, L., Orozco–Villafuerte, J., Cruz–Sosa, F., Chávez–Ávila, V.M. and Vernon–Carter, E.J. (2007). Clonal propagation of mesquite tree (Prosopis laevigata Humb. & Bonpl. Ex Willd. M.C. Johnston). In Vitro Cellular and Developmental Biology–Plant 43, 260–266.         [ Links ]

Danisco, A/S. (2007). Intermediates. L–arabinose CT99. Available at http://www.danisco.com/cms/connect/corporate/products%20and%20services/pharma%20and%20healthcare/pharma/intermediates/intermediates_en.htm.         [ Links ]

Díaz–Godínez, G., Soriano–Santos, J., Augur, C. and Viniegra–González, G. (2001). Exopectinases produced by Aspergillus niger in solid–state and submerged fermentation: a comparative study. Journal of Industrial Microbiology and Biotechnology 26, 271–275.         [ Links ]

Favela–Torres, E., Córdova–López, J., García–Rivero, M. and Gutiérrez–Rojas, M. (1998). Kinetics of growth of Aspergillus niger during submerged, agar surface and solid state fermentations. Process Biochemistry 33, 103107.         [ Links ]

Felker, P. (1993). Review of applied aspects of Prosopis. In: Prosopis species in the arid and semi–arid zones of India, (J.C. Temari, N.M. Pasecznik and P.C.C. Harris, eds.), Pp. 11–14. Prosopis Society of India, Jodhpur, Rajasthan, India.         [ Links ]

Gunata, Z., Brillouet, J.M., Voirin, S., Baumes, R. and Cordonnier, R. (1990). Purification and some properties of an α–L–arabinofuranosidase from Aspergillus niger. Action on grape monoterpenyl arabinofuranosylglucosides. Journal of Agricultural Food Chemistry 38, 772–776.         [ Links ]

Kaneko, S., Shimasaki, T. and Kusakabe, I. (1993). Purification and some properties of intracellular α–L–arabinofuranosidase from Aspergillus niger 5–16. Bioscience Biotechnology and Biochemistry 57, 1161-1165.         [ Links ]

Karhumaa, K., Wiedemann, B., Hahn–Hagerdal, B., Boles, E. and Gorwa–Grauslund, M.F. (2006). Co–utilization of L–arabinose and D–xylose by laboratory and industrial Saccharomyces cerevisiae strains. Microbial Cell Factories 5, 18.         [ Links ]

Liu, J.Z., Weng, L.P., Zhang, Q.L., Xu, H. and Ji, L.N. (2003). A mathematical model for gluconic acid fermentation by Aspergillus niger. Biochemical Engineering Journal 14, 137–41.         [ Links ]

Lowry, O.H., Rosebrough, N.J., Farr, A.L. and Randall, R.J. (1951). Protein measurement with the folin fenol reagent. Journal of Biological Chemistry 193, 265–275.         [ Links ]

Mirón, J., González, M.P., Pastrana, L. and Murado, M.A. (2002). Diauxic production of glucose oxidase by Aspergillus niger in submerged culture: A dynamic model. Enzyme and Microbial Technology 31, 615–620.         [ Links ]

Orozco–Villafuerte, J., Cruz–Sosa, F., Ponce–Alquicira, E. and Vernon–Carter, E.J. (2003). Mesquite gum: fractionation and characterization of the gum exuded from Prosopis laevigata obtained from plant tissue culture and from wild trees. Carbohydrate Polymers 54, 327–333.         [ Links ]

Park, N.H., Yoshida, S., Takakashi, A., Kawabata, Y., Sun, H.J. and Kusakabe, I. (2001). A new method for the preparation of crystalline L–arabinose from arabinoxylan by enzymatic hydrolysis and selective fermentation with yeast. Biotechnology Letters 23, 411–416.         [ Links ]

Pedersen, J.K. (1980). Pectins. In: Handbook of Water–Soluble Gums and Resins, (R.L. Davidson, ed.), Pp. 15.1–15.21. McGraw Hill Book Company, New York.         [ Links ]

Rombouts, F.M., Voragen, A.G.J., Searl–van, L.M.F., Geraeds, C.C.J.M., Schols, H.A. and Plink, W. (1988). The arabinanases of Aspergillus niger – purification and characterization of two α–L–arabinofuranosidases and an endo–1,5–α–L–arabinanase. Carbohydrate Polymers 9, 25–47.         [ Links ]

Saha, B.C. (2000). α–L–Arabinofuranosidases: biochemistry, molecular biology and application in biotechnology. Biotechnology Advances 18, 403–423.         [ Links ]

Soto–Cruz, O., Favela–Torres, E. and Saucedo–Castaneda, G. (2002). Modeling of growth, lactate consumption, and volatile fatty acid production by Megasphaera elsdenii cultivated in minimal and complex media. Biotechnology Progress 18, 193–200.         [ Links ]

Spagnuolo, M., Crecchio, C. and Pizzigallo, M.D.R. (1999). Fractionation of sugar beet pulp into pectin, cellulose and arabinose by arabinases combined with ultrafiltration. Biotechnology and Bioengineering 64, 685–691.         [ Links ]

Susumu, H. (1999). Nutritional and physiological functions and uses of L–arabinose. Journal of Applied Glycoscience 46, 159–165.         [ Links ]

Tagawa, K. and Kaji, A. (1988). α–L–Arabinofuranosidase from Aspergillus niger. Methods in Enzymology 160, 707–712.         [ Links ]

van der Veen, P., Flipphi, M.J.A., Voragen, A.G.J. and Visser, J. (1993). Induction of extracellular arabinases on monomeric substrates in Aspergillus niger. Archives of Microbiology 159, 66–71.         [ Links ]

van der Veen, P., Flipphi, M.J.A., Voragen, A.G.J. and Visser, J. (1991). Induction, purification and characterisation of arabinases produced by Aspergillus niger. Archives of Microbiology 157, 23–28.         [ Links ]

Vernon–Carter, E.J., Beristain, C.I. and Pedroza–Islas, R. (2000). Mesquite gum (Prosopis gum). In: Novel Macromolecules in Food Systems, Developments in Food Science 41, (G. Doxastakis and V. Kiosseoglou, eds.), Pp. 217–238. Elsevier Science Publishers, Amsterdam.         [ Links ]

White, E. V. (1947). Isolation of L–arabinose. Journal of the American Chemical Society 69, 715–715.         [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License