SciELO - Scientific Electronic Library Online

 
vol.25 número2Caracterización fisicoquímica de almidón recuperado de papa (Solanum tuberosum) residual de la industria de papas fritas en MéxicoMecanismos asociados con la modificación del endospermo en maíz de calidad proteínica índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Biotecnia

versión On-line ISSN 1665-1456

Biotecnia vol.25 no.2 Hermosillo may./ago. 2023  Epub 25-Ago-2023

https://doi.org/10.18633/biotecnia.v25i2.1846 

Artículos de revisión

Enterobacteriaceae in Pork Meat: Causal Agents of Public Health Problems

Enterobacterias en Carne de Cerdo: Agentes Causales de Problemas de Salud Pública

Alma D. Paz-González1  2 

Karina Vázquez1 

Ana V. Martínez-Vázquez2 

Carlos Ramírez-Martínez1 

Gildardo Rivera2  * 

1Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Nuevo León, General Escobedo, ZC 66054, México

2Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa, ZC 88710, México.


Summary

Pork meat is one of the most consumed products worldwide, and pathogenic microorganisms in pork, such as Enterobacteriaceae, represent a public health risk, causing foodborne diseases. Enterobacteriaceae in pork meat processing is an indicator of poor sanitation management. Escherichia coli (E. coli) and Salmonella spp. are the most prevalent bacteria. Different studies report that their high percentage and the multidrug resistance found are an alarming risk to consumers´ health.

Keywords: Enterobacteriaceae; Pork; Public health

Resumen

La carne de cerdo es uno de los productos más consumidos a nivel mundial, y los microorganismos patógenos en la carne de cerdo, como las Enterobacterias, representan un riesgo para la salud pública, provocando enfermedades de transmisión alimentaria. Las Enterobacterias en el procesamiento de la carne de cerdo son un indicador de una gestión sanitaria deficiente. Escherichia coli (E. coli) y Salmonella spp. son las bacterias más prevalentes. Diferentes estudios indican que su porcentaje alto y la multifarmaco-resistencia son un riesgo alarmante para la salud de los consumidores.

Palabras clave: Enterobacterias; Carne de cerdo; Salud pública

Introduction

Meat is one of the main food sources for the human population worldwide. It is an important source of protein, essential amino acids, zinc, iron, phosphorus, and vitamin B, providing benefits to adults (cell repair and regeneration) and children and adolescents (growth and development) (Bohrer, 2017). The consumption of meat is in high demand globally. However, consumption varies depending on the region due to the influence of various factors such as gender, rural or urban origin, educational level, and age of consumers (Estevez-Moreno et al., 2021). Another important factor is income, which in the case of the Mexican population, is a determining aspect influencing the selection of chicken, pork, or beef meat (Huerta-Sanabria et al., 2018).

The production and consumption of chicken, pork, beef, lamb, and mutton have grown, reaching record highs in 2021, with an annual meat production and consumption of 335,275 and 334,975, respectively. Mexico is among the countries with the highest meat protein production and consumption. Chicken meat is the most consumed (4,166 tons), followed by pork (2,217 tons) and beef (1,723 tons) (OECD-FAO, 2022).

On the other hand, one of the world’s biggest problems facing meat production and distribution is its susceptibility to bacterial contamination. This situation is related to deficiencies in hygiene and poor handling practices during processing and distribution, which cause public health problems such as gastroenteritis and diarrhea, among others. The Center for Disease Control and Prevention (CDC) reports more than 250 foodborne diseases (FBD), mainly caused by bacteria (CDC, 2021). Microbial spread in meat occurs during the slaughtering process, mainly Enterobacteriaceae, a large family of gram-negative bacteria, such as Salmonella, Escherichia coli (E. coli), Klebsiella pneumoniae (K. pneumoniae), and Yersinia, among others (Rönnqvist et al., 2018; Peruzy et al., 2021). Bacteria, such as Staphylococcus aureus (S. aureus), Pseudomonas, Brochothrix, Carnobacterium photobacterium (C. photobacterium), Listeria, among others, have also been frequently detected in meat processing (Peruzy et al., 2019).

Enterobacteriaceae cause FBD (Mladenović et al., 2021), mainly gastrointestinal illnesses (Guzmán et al., 2017). In recent years there has been infections with strains resistant to one or more antibiotics, which has complicated treatment, aggravating the disease, and even leading to the death of patients. For this reason, the World Health Organization (WHO) considers bacterial or multidrug resistance as one of the ten main health problems worldwide (WHO, 2019).

Different techniques have been established to detect Enterobacteriaceae, such as traditional microbiological methods involving bacterial colony counting and molecular techniques, such as the polymerase chain reaction (PCR), for rapid and more accurate detection (Cauchie et al., 2020). Several studies have shown that Enterobacteriaceae are a recurrent problem in the production and commercialization of meat products, representing an important public health risk. Therefore, this study analyzed the presence of Enterobacteriaceae in pork meat and its potential risk as a causal agent of diseases.

We searched scientific articles in the PubMed, ScienceDirect, and Google Scholar databases for information and data on food safety issues in pork meat, regarding their production and consumption, bacterial pathogens presence, the prevalence of Enterobacteriaceae, and their impact on public health. The search was restricted to publications in English and Spanish. The literature review was carried out from March to July of 2022. The literature search was undertaken using the keywords: Enterobacteriaceae, meat, pork, antimicrobial resistance, and public health.

Prevalence of Enterobacteriaceae in pork meat

Several studies have demonstrated the presence of Enterobacteriaceae in pork meat samples (Table 1). In the United States, E. coli was detected with a prevalence of 12 % and Salmonella spp. with almost 6 % (Mollenkopf et al., 2011); years later, E. coli was reported with a value of 18 % (Scheinberg et al., 2017). While, in the northeast from Mexico, in the state of Tamaulipas, an investigation reported E. coli contamination in pork meat with a high prevalence (50 %) (Martínez et al., 2018).

Table 1 Prevalence of Enterobacteriaceae in pork from different countries. 

Tabla 1: Prevalencia de Enterobacterias en carne de cerdo de diferentes países. 

Bacteria Prevalence (%) Type of sample Place of origin Country
E. coli Salmonella spp. 12.2 5.8 Meat Retail markets United States (Mollenkopf et al., 2011)
Salmonella spp. 32.21 Meat Production and retail markets Romania (Mihaiu et al., 2014)
Salmonella spp. 56.0 Meat Slaughter Colombia (Arcos-Ávila et al., 2013)
Salmonella spp. 71.4 Meat Slaughter Colombia (Rondón-Barragán et al., 2015)
Salmonella spp. 22.5 Ground beef Retail markets Mexico (Villalpando-Guzmán et al., 2016)
E. coli 18 Meat Slaughter United States (Scheinberg, 2017)
E. coli 50.8 Ground beef Retail markets Mexico (Martínez et al., 2018)
Salmonella spp. 2.7 Tenderloin Retail markets Mexico (Gutiérrez et al., 2020)
Salmonella enterica 17.2 Meat Slaughter Brazil (Kich et al., 2020)

Salmonella spp. had a prevalence of 32 % in Romania (Mihaiu et al., 2014), and 56 % (Arcos-Ávila et al., 2013), and 71.4 % in Colombia (Rondón-Barragán et al., 2015). Salmonella has been detected with a prevalence of 22 % in samples of ground pork in the central region from Mexico (Villalpando-Guzmán et al., 2016). A recent study in southern Brazil detected Salmonella enterica (S. enterica) in this same type of meat with a prevalence of 17 % (Kich et al., 2020). In contrast to these results, in Mexico city reported Salmonella spp. with a prevalence of only 2 % (Gutiérrez et al., 2020).

Antimicrobial resistance in pork meat

Due to the high manufacture and administration of antibiotics in the production process of livestock animals (in 2010, more than 63,000 tons were used, and by 2030, more than 105,000 tons is estimated), antimicrobial resistance has rapidly increased and become a global public health threat (Van Boeckel et al., 2015; Elshamy and Aboshanab, 2020).

The presence of antibiotic-resistant bacteria in pork meat is a serious problem. Bacterial strains with resistance to different groups of antibiotics are shown in Table 2. In Europe, E. coli and Salmonella strains multiresistant to β-lactams were detected in samples from a processing company in Germany, that was supplied by slaughterhouses from Poland, Belgium, and Spain. Therefore, the authors suggested that the cause of such resistance is due to a very extensive processing and distribution chain (Schill et al., 2017). In Latin America, E. coli strains resistant to five antibiotics (ampicillin, tetracycline, nalidixic acid, chloramphenicol, and cotrimoxazole) were isolated in pork samples from markets in Lima, Peru (Ruiz-Roldán et al., 2018).

Table 2 Antimicrobial resistance of Enterobacteriaceae from pork.  

Tabla 2: Resistencia antimicrobiana de Enterobacterias provenientes de carne de cerdo. 

Bacteria Resistant to Country
E. coli GEN, TGC, OFX, LEV. Slovakia (Gajdošová et al., 2011)
E. coli AMC, AMP, PIP, CEC, COX, CXM, IMP, APR, GEN, NEO, SPT, STR, TOB, CMP, CIP, ENR, COL, DOX, CXT. Germania (Schwaiger et al., 2012)
E. coli Proteus vulgaris Klebsiella pneumoniae Enterobacter cloacae AMP, PIP, CAZ, CXM, CTX. Spain (Ojer-Usoz et al., 2013)
Salmonella spp. TET, FFC, AMP, CMP, AMC, EFT, STX, TMP, GEN, CIP. Colombia (Bermúdez & Rincón 2014)
Salmonella spp. SXT, STR, SPT, TET, AMP, TMP Thailand (Sinwat et al., 2015)
E. coli AMP, AMC, CXT, CMP, STR, KAN, GEN, SXT, TMP, TET, CIP. Czech Republic (Skočková et al., 2015)
E. coli CXT Cuba (Marrero-Moreno et al., 2017)
E. coli GEN, CEP, CTX, CIP, AMP, CAZ, CMP. Germany (Schill et al., 2017)
Escherichia fergusonii AMP
E. cloacae CTX, CAZ, AMP.
Proteus mirabalis CEP, CTX, TGC, AMP, CMP, COL.
P. vulgaris CEP, TGC, AMP, CMP, COL.
E. coli AMP, TET, NAL, CIP, CMP. Peru (Ruiz-Roldán et al., 2018)
E. coli AMP, AMC, PIP, EPF, TET, GEN, TOB. Thailand (Lugsomya et al., 2018)

β-lactams: amoxicillin (AMC), ampicillin (AMP), piperacillin (PIP), cefaclor (CEC), cefoxitin (COX), cefuroxime (CXM), imipenem (IMP), cefotaxime (CXT), ceftiofur (EFT), cephalosporin (CEP). Chloramphenicol: chloramphenicol (CMP). Aminoglycosides: apramycin (APR), gentamicin (GEN), neomycin (NEO), spectinomycin (SPT), streptomycin (STR), tobramycin (TOB), kanamycin (KAN), florfenicol (FFC). Fluoroquinolones: ciprofloxacin (CIP), enrofloxacin (ENR), doxycycline (DOX). Antimetabolites: sulfamethoxazole (SXT), trimethoprim (TMP). Tetracycliclines: tetracyclicline (TET). Quinolones: lovofoxacin (LEV), ofloxacin (OFX), nalidixic acid (NAL). Glycylcycline: tigecycline (TGC). Ureidopenicillins: ceftazidime (CAZ). Polymyxin: colistin (COL).

β-lactamicos: amoxicilina (AMC), ampicilina (AMP), piperacilina (PIP), cefaclor (CEC), cefoxitina (COX), cefuroxima (CXM), imipenem (IMP), cefotaxima (CXT), ceftiofur (EFT), cefalosporina (CEP). Cloranfenicol: cloranfenicol (CMP) Aminoglicosidos: apramicina (APR), gentamicina (GEN), neomicina (NEO), espectinomicina (SPT), estreptomicina (STR), tobramicina (TOB), kanamicina (KAN), florfenicol (FFC). Fluoroquinolones: ciprofloxacina (CIP), enrofloxacina (ENR), doxiciclina (DOX). Antimetabolitos: sulfametoxazol (SXT), trimetoprima (TMP). Tetracliclinas: tetracliclina (TET). Quinolonas: lovofoxacina (LEV), ofloxacina (OFX), ácido nalidíxico (NAL). Glicilciclina: tigeciclina (TGC). Ureidopenicilinas: ceftazidime (CAZ). Polimixina: colistina (COL).

Impact on public health

According to WHO estimates, in 2015, FBD (caused by bacteria, viruses, parasites, toxins, and chemicals) triggered various outbreaks worldwide, sickening more than 600 million people annually and killing around 420,000. On the American continent, more than 77 million people fall ill annually, and around 9,000 die from consuming contaminated food. Among the food pathogens that endanger health, the Enterobacteriaceae responsible for diseases are mainly Salmonella (salmonellosis) and E. coli, which cause gastrointestinal problems such as nausea, vomiting, abdominal pain, and diarrhea. Other signs are fever and headache (WHO, 2018; Nastasijevic et al., 2020).

Enterobacteriaceae infections from pork meat consumption represent a serious worldwide health problem for consumers. In the United States, chicken and pork meat consumption cause most salmonellosis infections (Bonardi, 2017). According to Tran et al. (2018), Salmonella enterica (S. enterica) and some E. coli strains from pigs are major intestinal pathogens. In Germany, public health authorities investigated salmonellosis outbreaks in 2013 and 2014. Based on a trace-back analysis, they detected Salmonella muenchen (S. muenchen) in a pig breeding farm and considered it a probable source of contamination. The investigation suggested that intoxications were caused by consuming raw pork and pork products, traditional foods in some regions of Germany (Schielke et al., 2017).

In The Netherlands, a study reported a strong association between salmonellosis and pork, considering that consuming pork contaminated with Salmonella increases the risk of intoxication in people treated with medications such as antibiotics or antacids. Additionally, salmonellosis contamination can also occur in workers from pig farms and slaughterhouses (Berends et al., 1998).

An investigation by Hernandez et al. (2011) showed data on salmonellosis cases (paratyphoid and other salmonella-derived diseases) in Mexico from 2000-2008. In 2000, 10,000 cases were reported, although, in the same year, they began to decrease; however, from 2002 to 2007, the cases increased to 12,000 and slightly decreased in 2008. In the case of shigellosis, by the end of 1999, there were 40,000 cases, with a significant decrease in the 2000-2008 period, reaching 10,000 cases; however, this number was still considered high according to those reported in the epidemiology bulletin of the Mexican Republic.

Good handling practices

Good handling practices and sanitary surveillance are important during the different stages of the production and distribution chain, to avoid pork meat contamination with bacterial pathogens harmful to humans (Tang et al., 2017). Meat can be contaminated from its origin due to animal diseases, medication residues, or when the microbial flora of the slaughtered animal comes into contact with the meat. It can also be contaminated by surfaces, equipment, utensils, water, and even the hands of workers (Nerin et al., 2016).

Slaughterhouses represent a strategic control point for achieving meat product safety (COFEPRIS, 2017, in Spanish). In the case of Mexico, the National Health, Safety and Food Quality Service (SENASICA, in Spanish) and the Agriculture and Rural Development Secretariat (SADER, in Spanish), have as their objective the reduction in agricultural and livestock risks, among others, and to keep the surveillance of food contamination and agri-food quality of import and export products under strict control.

Breeding and animal care stage: At the start of pig breeding, feeding plays an important role in avoiding risks to animal and human health. In Mexico, the Official Mexican Standard, NOM-061-ZOO-1999, which states the “Animal health specifications of food products for human consumption”, indicates which finished food products should be used for animal consumption. In the care of animals intended for human consumption, overexposure to antibiotics has potential adverse effects through direct toxicity to consumers and the generation of microbial resistance (Chen et al., 2019). Due to the presence of antimicrobial-resistant bacteria, the use of antimicrobials for animal growth promotion was banned in Europe and the United States, particularly those classified as critically important for treating human infections (Iriti et al., 2020). In Mexico, the specifications for the use of antibiotics in animals are described in the Official Mexican Standard NOM-064-ZOO-2000, “Guidelines for the classification and prescription of veterinary pharmaceutical products by the level of risk of their active ingredients.” It establishes the technical and scientific criteria for the active ingredients used in the formulation of veterinary pharmaceutical products to avoid toxic effects on animals.

Slaughter and distribution stage: The pig slaughter process is commonly carried out in Federal Inspection Type (TIF, in Spanish) slaughterhouses, Health Secretariat Type (TSS, in Spanish) municipal slaughterhouses, or private slaughterhouses. TIF slaughterhouses are subject to stricter standards of hygiene regulation and cold chain integrity and are mainly used by large meat companies (OECD, 2018). However, the three slaughter sites must comply with the sanitary regulations for handling animal products stipulated in the NOM-194-SSA1-2004 standard, which has as its main objective the definition of the sanitary specifications that establishments must comply with if engaged in the slaughter and preparation of animals for supply, storage, transport, and sale of their products. In addition, meat product transportation and distribution chains must comply with NOM-024-ZOO-1995. This standard mentions the specifications and zoosanitary characteristics for the transportation of animals, their products, and by-products, and chemical, pharmaceutical, biological, and food products for use in animals or consumption by them. To this end, the Federal Commission for the Protection against Sanitary Risks (COFEPRIS, in Spanish) monitors the strategy for evaluating sanitary risks and management actions in slaughterhouses to reduce risks in meat products.

Conclusion

The increase in the worldwide production and consumption of pork meat in recent years have acquired greater relevance for the food industry because the industry must provide food free of pathogenic microorganisms. Enterobacteriaceae are important because they spread easily and contaminate pork meat, causing gastrointestinal diseases. In this study, about the prevalence of Enterobacteriaceae in pork meat shown that Salmonella and Escherichia are frequently reported in slaughterhouses and retail markets. Unfortunately, both generous of strains are reported with antimicrobial resistance to several groups of antibiotics, such as β-lactams, aminoglycosides, fluoroquinolones, and chloramphenicol. Therefore, the responsible use of antibiotics in veterinary swine care practices should adhere to the provisions of good management practices manuals and current regulations aimed at the proper use of antibiotics during the raising of animals for human consumption.

References

Arcos-Ávila, E. C., Mora-Cardona, L., Fandiño-de Rubio, L. C., and Rondón-Barragán, I. S. 2013. Prevalencia de Salmonella spp. en carne porcina, plantas de beneficio y expendios del Tolima. Orinoquia. 17(1); 59-68. [ Links ]

Berends, B. R., Van Knapen, F., Mossel, D. A. A., Burt, S. A., and Snijders, J. M. A. 1998. Impact on human health of Salmonella spp. on pork in The Netherlands and the anticipated effects of some currently proposed control strategies. International Journal of Food Microbiology. 44(3): 219-229. [ Links ]

Bermúdez, P. M., and Rincón, S. M. 2014. Evaluación de la susceptibilidad antimicrobiana de cepas de Salmonella spp. aisladas del beneficio porcino en Colombia. Revista Facultad Nacional de Salud Pública. 32(1): 88-97. [ Links ]

Bohrer, B. M. 2017. Nutrient density and nutritional value of meat products and non-meat foods high in protein. Trends in Food Science & Technology. 65: 103-112. [ Links ]

Bonardi, S. 2017. Salmonella in the pork production chain and its impact on human health in the European Union. Epidemiology & Infection. 145(8): 1513-1526. [ Links ]

Cauchie, E., Delhalle, L., Taminiau, B., Tahiri, A., Korsak, N., Burteau, S., Fall, P. A., Farnir, F., Bare, G. and Daube, G. 2020. Assessment of spoilage bacterial communities in food wrap and modified atmospheres-packed minced pork meat samples by 16S rDNA metagenetic analysis. Frontiers in Microbiology. 10: 3074. [ Links ]

Centro para el control y tratamiento de enfermedades (CDC). Microbios y enfermedades transmitidos por los alimentos. [Accessed July-10-2022] 2021. Available in: Available in: https://www.cdc.gov/foodsafety/es/foodborne-germs-es.htmlLinks ]

Chen, J., Zhao, L., Mao, Y., Ye, M., Guo, Q., Zhang, Y., Liyun, X., Zhang, Z., and Chu, H. 2019. Clinical efficacy and adverse effects of antibiotics used to treat Mycobacterium abscessus pulmonary disease. Frontiers in Microbiology. 10: 1977. [ Links ]

Comisión Federal para la Protección contra Riesgos Sanitarios (COFEPRIS). Riesgos en Alimentos de Origen Animal: Evaluación de Riesgos en Rastros y Mataderos Municipales. [Accessed May-19-2022] 2017. Available in: Available in: https://www.gob.mx/cofepris/acciones-y-programas/riesgos-en-alimentos-de origen-animal-evaluacion-de-riesgos-en-rastros-y-mataderos-municipalesLinks ]

Diario Oficial de la Federación. Norma oficial mexicana NOM-092-SSA1-1994, Especificaciones zoosanitarias de los productos alimenticios para consumo animal [Accessed June-20-2022]. 1994. Available in: Available in: https://www.gob.mx/cms/uploads/attachment/file/203496/NOM-061-ZOO 1999_11102000.pdfLinks ]

Diario Oficial de la Federación. Norma Oficial Mexicana NOM-024-ZOO-1995, Especificaciones y características zoosanitarias para el transporte de animales, sus productos y subproductos, productos químicos, farmacéuticos, biológicos y alimenticios para uso en animales o consumo por éstos. [Accessed July-01- 2022]. 1995. Available in: Available in: https://www.gob.mx/cms/uploads/attachment/file/563482/NOM-024-ZOO-1995_161095.pdfLinks ]

Diario Oficial de la Federación. Norma Oficial Mexicana NOM-064-ZOO-2000. Lineamientos para la clasificación y prescripción de productos farmacéuticos veterinarios por el nivel de riesgo de sus ingredientes activos. [Accessed June-25- 2022]. 2000. Available in: Available in: https://www.gob.mx/cms/uploads/attachment/file/203504/NOM-064-ZOO-2000_270103.pdf . [ Links ]

Diario Oficial de la Federación . Norma Oficial Mexicana NOM-194-SSA1-2004, Productos y servicios. Especificaciones sanitarias en los establecimientos dedicados al sacrificio y faenado de animales para abasto, almacenamiento, transporte y expendio. Especificaciones sanitarias de productos. [Accessed June- 30-2022]. 2004. Available in: Available in: https://www.dof.gob.mx/nota_detalle.php?codigo=661587&fecha=18/09/2004# gsc.tab=0Links ]

Elshamy, A. A., and Aboshanab, K. M. 2020. A review on bacterial resistance to carbapenems: epidemiology, detection, and treatment options. Future science OA. 6(3): FSO438. [ Links ]

Estévez-Moreno, L. X., María, G. A., Sepúlveda, W. S., Villarroel, M., and Miranda-de la Lama, G. C. 2021. Attitudes of meat consumers in Mexico and Spain about farm animal welfare: A cross-cultural study. Meat Science. 173: 108377. [ Links ]

Food and Agriculture Organization (FAO). 2021. Meat market review: Emergency trends an outlook. 1-15. [ Links ]

Gajdošová, Ľ., Kačániová, M., Bobček, B., Lejková, J., Hleba, L., and Čuboň, J. 2011. Antibiotic resistance of enterobacteriaceae species isolated from pork meat. Animal Physiology. 57-62. [ Links ]

Gutiérrez, R., Alquicira, E. P., Varela, D. B., and Chabela, M. D. L. P. 2020. Prevalencia de microorganismos patógenos en carne de cerdo al menudeo en supermercados de la Ciudad de México. Nacameh. 14(1): 31-40. [ Links ]

Guzmán, C. A., Rodríguez-Rodríguez, V. C., and Calderón-Rangel, A. 2017. Contaminantes microbiológicos en un mercado del sur de Montería: Un riesgo para la salud pública. Ciencia y Agricultura. 14(2): 89-97. [ Links ]

Hernandez, C. C., Aguilera, A. M. G., and Castro, E. G., C. E. 2011. Situación de las enfermedades gastrointestinales en México. Enfermedades Infecciosas y Microbiología. 31(4): 137. [ Links ]

Huerta-Sanabria, S., Arana-Coronado, Ó. A., Sagarnaga-Villegas, L. M., Matus-Gardea, J. A., and Brambila-Paz, J. D. J. 2018. Impacto del ingreso y carencias sociales sobre el consumo de carne en México. Revista Mexicana de Ciencias Agrícolas. 9(6): 1245-1258. [ Links ]

Iriti, M., Vitalini, S., and Varoni, E. M. 2020. Humans, animals, food and environment: One health approach against global antimicrobial resistance. Antibiotics. 9(6): 346. [ Links ]

Kich, J. D., Souza, A. I., Montes, J., Meneguzzi, M., Costa, E. F., Coldebella, A., Corbellini, L. G. and Cardoso, M. 2020. Investigation of Listeria monocytogenes, Salmonella enterica and Yersinia enterocolitica in pig carcasses in Southern Brazil. Pesquisa Veterinária Brasileira. 40: 781-790. [ Links ]

Lugsomya, K., Yindee, J., Niyomtham, W., Tribuddharat, C., Tummaruk, P., Hampson, D. J., and Prapasarakul, N. 2018. Antimicrobial resistance in commensal Escherichia coli isolated from pigs and pork derived from farms either routinely using or not using in-feed antimicrobials. Microbial Drug Resistance. 24(7): 1054-1066. [ Links ]

Marrero-Moreno, C. M., Mora-Llanes, M., Hernández-Fillor, R. E., Báez-Arias, M., García-Morey, T., and Espinosa-Castaño, I. 2017. Identificación de Enterobacteriaceae productoras de betalactamasas de espectro extendido (BLEEs) en instalaciones porcinas de la provincia Matanzas. Revista de Salud Animal. 39(3): 00-00. [ Links ]

Martínez-Vázquez, A. V., Rivera-Sánchez, G., Lira-Méndez, K., Reyes-López, M. Á., and Bocanegra-García, V. 2018. Prevalence, antimicrobial resistance, and virulence genes of Escherichia coli isolated from retail meat in Tamaulipas, Mexico. Journal of Global Antimicrobial Resistance. 14: 266-272. [ Links ]

Mihaiu, L., Lapusan, A., Tanasuica, R., Sobolu, R., Mihaiu, R., Oniga, O., and Mihaiu, M. 2014. First study of Salmonella in meat in Romania. The Journal of Infection in Developing Countries. 8(01): 050-058. [ Links ]

Mladenović, K. G., Grujović, M. Ž., Kiš, M., Furmeg, S., Tkalec, V. J., Stefanović, O. D., and Kocić-Tanackov, S. D. 2021. Enterobacteriaceae in food safety with an emphasis on raw milk and meat. Applied Microbiology and Biotechnology, 105(23), 8615-8627. [ Links ]

Mollenkopf, D. F., Kleinhenz, K. E., Funk, J. A., Gebreyes, W. A., and Wittum, T. E. 2011. Salmonella enterica and Escherichia coli harboring bla CMY in retail beef and pork products. Foodborne Pathogens and Disease. 8(2): 333-336. [ Links ]

Nastasijevic, I., Schmidt, J. W., Boskovic, M., Glisic, M., Kalchayanand, N., Shackelford, S. D., Wheeler, T. L., Koohmaraie, M., and Bosilevac, J. M. 2020. Seasonal prevalence of Shiga toxin-producing Escherichia coli on pork carcasses for three steps of the harvest process at two commercial processing plants in the United States. Applied and Environmental Microbiology. 87(1): e01711-20. [ Links ]

Nerin, C., Aznar, M., and Carrizo, D. 2016. Food contamination during food process. Trends in Food Science & Technology. 48: 63-68. [ Links ]

Ojer-Usoz, E., González, D., Vitas, A. I., Leiva, J., García-Jalón, I., Febles-Casquero, A., and de la Soledad Escolano, M. 2013. Prevalence of extended-spectrum β-lactamase-producing Enterobacteriaceae in meat products sold in Navarra, Spain. Meat Science. 93(2): 316-321. [ Links ]

Organizacion para la cooperacion y el Desarrollo Económicos. Estudios de evaluación de competencia de la OCDE: Mexico. Editions OCDE, Paris. [Accessed March-02-2022]. 2018. Available in: https://doi.org/10.1787/9789264287921-es [ Links ]

Organization for Economic Co-operation and Development- Food and Agriculture Organization (OECD-FAO) Agricultural Outlook 2017-2026: MEATS - OECD-FAO Agricultural Outlook 2017-2026. [Accessed March-12-2022]. 2022. Available in: Available in: https://stats.oecd.org/index.aspx?queryid=76854 . [ Links ]

Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO). 2017. Presentación y evaluación de los datos sobre residuos de plaguicidas para la estimación de los límites máximos de residuos de plaguicidas en alimentos y piensos. Tercera edición. 225: 1-321. [ Links ]

Peruzy, M. F., Murru, N., Yu, Z., Cnockaert, M., Joossens, M., Proroga, Y. T. R., and Houf, K. 2019. Determination of the microbiological contamination in minced pork by culture dependent and 16S amplicon sequencing analysis. International Journal of Food Microbiology. 290: 27-35. [ Links ]

Peruzy, M. F., Houf, K., Joossens, M., Yu, Z., Proroga, Y. T. R., and Murru, N. 2021. Evaluation of microbial contamination of different pork carcass areas through culture-dependent and independent methods in small-scale slaughterhouses. International Journal of Food Microbiology. 336: 108902. [ Links ]

Rondón-Barragán, I. S., Arcos, E. C., Mora-Cardona, L., and Fandiño, C. 2015 Characterization of Salmonella species from pork meat in Tolima, Colombia. Revista Colombiana de Ciencias Pecuarias. 28(1): 74-82. [ Links ]

Rönnqvist, M., Välttilä, V., Ranta, J., and Tuominen, P. 2018. Salmonella risk to consumers via pork is related to the Salmonella prevalence in pig feed. Food in Microbiology. 71: 93-97. [ Links ]

Ruiz-Roldán, L., Martínez-Puchol, S., Gomes, C., Palma, N., Riveros, M., Ocampo, K., Durand, D., Ochoa, T. J., Ruiz, J. and Pons, M. J. 2018. Presencia de Enterobacteriaceae y Escherichia coli multirresistente a antimicrobianos en carne adquirida en mercados tradicionales en Lima. Revista Peruana de Medicina Experimental y Salud Pública. 35: 425-432. [ Links ]

Scheinberg, J. A., Dudley, E. G., Campbell, J., Roberts, B., DiMarzio, M., DebRoy, C., and Cutter, C. N. 2017. Prevalence and phylogenetic characterization of Escherichia coli and hygiene indicator bacteria isolated from leafy green produce, beef, and pork obtained from farmers’ markets in Pennsylvania. Journal of Food Protection. 80(2): 237-244. [ Links ]

Schielke, A., Rabsch, W., Prager, R., Simon, S., Fruth, A., Helling, R., Schnabel, M., Siffczyk, C., Wieczorek, S., Schroeder, S., Ahrens, B., Oppermann, H., Pfeiffer, S., Merbecks, S, S., Rosner, B., Frank, C., Weiser, A, A ., Luber, P., Gilsdorf, A., Stark, K. and Werber, D. 2017. Two consecutive large outbreaks of Salmonella Muenchen linked to pig farming in Germany, 2013 to 2014: Is something missing in our regulatory framework? Eurosurveillance. 22(18): 30528. [ Links ]

Schill, F., Abdulmawjood, A., Klein, G., and Reich, F. 2017. Prevalence and characterization of extended-spectrum β-lactamase (ESBL) and AmpC β-lactamase producing Enterobacteriaceae in fresh pork meat at processing level in Germany. International Journal of Food in Microbiology. 257: 58-66. [ Links ]

Schwaiger, K., Huther, S., Hölzel, C., Kämpf, P., and Bauer, J. 2012. Prevalence of antibiotic-resistant enterobacteriaceae isolated from chicken and pork meat purchased at the slaughterhouse and at retail in Bavaria, Germany. International Journal of Food Microbiology. 154(3): 206-211. [ Links ]

Sinwat, N., Angkittitrakul, S., and Chuanchuen, R. 2015. Characterization of antimicrobial resistance in Salmonella enterica isolated from pork, chicken meat, and humans in Northeastern Thailand. Foodborne Pathogens and Disease. 12(9): 759-765. [ Links ]

Skočková, A., Koláčková, I., Bogdanovičová, K., and Karpíšková, R. 2015. Characteristic and antimicrobial resistance in Escherichia coli from retail meats purchased in the Czech Republic. Food Control. 47: 401-406. [ Links ]

Tang, K. L., Caffrey, N. P., Nóbrega, D. B., Cork, S. C., Ronksley, P. E., Barkema, H. W., Polachek, A. J., Ganshorn, H., Sharma, N., Kellner, J. D., and Ghali, W. A. 2017. Restricting the use of antibiotics in food-producing animals and its associations with antibiotic resistance in food-producing animals and human beings: a systematic review and meta-analysis. The Lancet Planetary Health. 1(8): e316-e327. [ Links ]

Tran, T. H. T., Everaert, N., and Bindelle, J. 2018. Review on the effects of potential prebiotics on controlling intestinal enteropathogens Salmonella and Escherichia coli in pig production. Journal of Animal Physiology and Animal Nutrition. 102(1): 17-32. [ Links ]

Van Boeckel, T. P., Brower, C., Gilbert, M., Grenfell, B. T., Levin, S. A., Robinson, T. P., Teillant, A., and Laxminarayan, R. 2015. Global trends in antimicrobial use in food animals. Proceedings of the National Academy of Sciences. 112(18): 5649-5654. [ Links ]

Villalpando-Guzmán, S., Vázquez-Quiñones, C. R., Natividad-Bonifacio, I., Quiñones-Ramírez, E. I., and Vázquez-Salinas, C. 2016. Prevalence of Salmonella in Chicken, Beef and Pork Meat in Mexico City. Academia Journal of Microbiology Research 4(10): 125-130. [ Links ]

World Health Organization (WHO). Informe de la OMS señala que los niños menores de 5 años representan casi un tercio de las muertes por enfermedades de transmisión alimentaria. [Accessed April-18-2022] 2015. Available in: Available in: https://www.who.int/es/news/item/03-12-2015-who-s-first-ever-global-estimates-of-foodborne-diseases-find-children-under-5-account-for-almost-one-third-of-deathsLinks ]

World Health Organization (WHO). E. coli. [Accessed April-15- 2022] 2018. Available in: Available in: https://www.who.int/news-room/fact-sheets/detail/e-coliLinks ]

World Health Organization-Pan American Health Organization (WHO-OPS). [Accessed March-15-2022] 2019. Available in: Available in: https://www3.paho.org/hq/index.php?option=com_content&view=article&id=14916:ten-threats-to-global-health-in-2019&Itemid=135&lang=esLinks ]

Received: October 09, 2022; Accepted: February 02, 2023

*Correspondence author: Gildardo Rivera e-mail: gildardors@hotmail.com

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License