SciELO - Scientific Electronic Library Online

 
vol.12 número2Cambios en la flora béntica de Arrecife Hornos (Veracruz, México)Los metales como inhibidores del sistema de reparación del ADN índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


TIP. Revista especializada en ciencias químico-biológicas

versão impressa ISSN 1405-888X

TIP vol.12 no.2 Ciudad de México Dez. 2009

 

Artículos de revisión

Métodos no enzimáticos de isomerización de aldosas a cetosas

Elsa Fonseca-Santanilla1 

1 Depto. de Ciencias Básicas, Instituto La Salle de Investigaciones Avanzadas, ISIA, Vicerrectoría de Investigación y Transferencia, Universidad de La Salle. Carrera 5, No 59A-44, Edif. Hno. Justo Ramón, Piso 7, Bogotá, Colombia. E-mail: efonsecas@unisalle.edu.co


Resumen:

La isomerización enzimática y no enzimática de aldosas a cetosas es un proceso ampliamente estudiado, sin embargo, mientras que la tecnología que emplea enzimas se encuentra madura, las tecnologías no enzimáticas no se encuentran totalmente desarrolladas. El objetivo de esta revisión es presentar la selectividad y eficiencia de las alternativas reportadas en la literatura para la interconversión no enzimática de aldosas a cetosas con el fin de evaluar la factibilidad de su empleo en la industria de los alimentos. De los métodos analizados, aparentemente el más promisorio es el que emplea líquidos iónicos, ya que es rápido y ampliamente selectivo, sin embargo, desarrollar la tecnología que emplee este tipo de líquidos para la interconversión de un par aldosacetosa en particular es una tarea pendiente en la que los investigadores tendrán que trabajar en los próximos años.

Palabras Clave: Aldosa; cetosa; eficiencia; interconversión; selectividad

Abstract:

The enzymatic and non-enzymatic isomerization of aldoses to ketoses is a widely studied process. However, while the technology that uses enzymes is mature, non-enzymatic technologies are not fully developed. The objective of this review is to present the selectivity and efficiency of the alternatives reported in the literature for non-enzymatic interconversion of aldoses-ketoses, in order to evaluate the feasibility of its use in the food industry. Of the methods analyzed, the most promising are the ones that use ionic liquids due to the fact that they are fast and largely selective, but developing the technology that uses this type of liquids for the interconversion of a particular aldose-ketose pair is a challenge for research in the coming years.

Keywords: Aldose; ketose; efficiency; interconversion; selectivity

Texto completo disponible sólo en PDF.

Texto completo disponível apenas em PDF.

Full text available only in PDF format.

Referencias

1. Walker, T.E., Unkefer, C.J. & Ehler, D.S. The Synthesis of Carbon-13 Enriched Monosaccharides Derived from Glucose and Mannose. Journal of Carbohidrate Chemistry 7(1), 115-132 (1988). [ Links ]

2. Dehkord, A.M., Tehrany, M.S. & Safari, I. Kinetics of Glucose Isomerization to Fructose by Immobilized Glucose Isomerase (Sweetzyme IT). Industrial Engineering Chemical Research 48(7), 3271-3278 (2009). [ Links ]

3. Gelas, J. The reactivity of cyclic acetals of aldoses and aldosides. Advanced Carbohydrate Chemistry and Biochemistry 39, 71-156 (1981). [ Links ]

4. Ouellete, R.J. & Rawn, J.D. Organic Chemistry (Prentice-Hall, New Jersey, USA, 1996). [ Links ]

5. Ziegler, T. Protecting group strategies for carbohydrates. In: Carbohydrate Chemistry (ed. Boons, G.J.) 21-45 (Chapman & Hall, Glasgow, 1997). [ Links ]

6. Levy, D.E. & Fugedi, P. The Organic Chemistry of Sugars (CRC Taylor & Francis group, New York, 2006). [ Links ]

7. Wuts, P. & Greene, T. Greene‘s protective groups in organic synthesis. 4a. edición. (John Wiley & Sons, Inc., 2007). [ Links ]

8. Rendleman, J.A. Jr. Alkali Metal Complexes of Carbohydrates. Journal Organic Chemistry. 31(6), 1839-1845 (1966). [ Links ]

9. Lichtenthaler, F.W. Towards improving the utility of ketoses as organic raw materials. Carbohydrate Research 313, 69-89 (1998). [ Links ]

10. Speck Jr. J. The Lobry de Bruyn-Alberda van Ekenstein Transformation. Advances in Carbohydrate Chemistry 13, 63-103 (1958). [ Links ]

11. Angyal S.J. A short note on the epimerization of aldoses. Carbohydrate Research 300, 279-281 (1997). [ Links ]

12. Angyal, S.J. The Lobry de Bruyn-Alberda van Ekenstein transformation and related reactions. In: Glycoscience: epimerisation, isomerisation and rearrangement reactions of carbohydrates (ed. Stütz, A.E.) 1-14 (Springer-Verlag, Berlin, 2001). [ Links ]

13. Belitz, H., Grosch, W. & Schieberle, P. Food Chemistry. 3a. edición (Springer-Verlag, 2004). [ Links ]

14. Ekeberg, D., Morgenlie, S. & Stenstrøm, Y. Isomerisation of aldoses in pyridine in the presence of aluminium oxide. Carbohydrate Research 340, 373-377 (2005). [ Links ]

15. Wise, C.S., Dimler, R.J., Davis, H.A. & Rist, C.E. Determination of Easily Hydrolyzable Fructose Units in Dextran Preparations. Analytical Chemistry 27(1), 33-36 (1955). [ Links ]

16. Yaylayan, V.A. & Ismail, A.A. Investigation of the enolization and carbonyl group migration in reducing sugars by FTIR spectroscopy. Carbohydrate Research 276(2), 253-265 (1995). [ Links ]

17. Paredes, E., Maestre, S.E., Prats, S.Y. & Todolý, J.L. Simultaneous Determination of Carbohydrates, Carboxylic Acids, Alcohols, and Metals in Foods by High-Performance Liquid Chromatography Inductively Coupled Plasma Atomic Emission Spectrometry. Analytical Chemistry 78, 6774-6782 (2006). [ Links ]

18. Badui, S. Química de los Alimentos. 4a. edición (Pearson Addison Wesley, México, 2006). [ Links ]

19. Hotchkiss, D.J., Jenkinson, S.F., Storer, R., Heinzc, T.Y. & Fleeta, G.W. Amadori ketoses with calcium hydroxide and the Kiliani reaction on 1-deoxy ketoses: two approaches to the synthesis of saccharinic acids. Tetrahedron Letters 47, 315-318 (2006). [ Links ]

20. Kabyemela, B.M., Adschiri, T., Malaluan, R.M, & Arai, K. Glucose and Fructose Decomposition in Subcritical and Supercritical Water: Detailed Reaction Pathway, Mechanisms, and Kinetics. Industrial Engineering Chemical Research 38, 2888-2895 (1999). [ Links ]

21. Tomasik, P., Pakasinski, M. & Wiejak, S. The thermal decomposition of carbohydrates. Advanced Carbohydrate Chemistry and Biochemistry 47, 279-344 (1989). [ Links ]

22. Draffin, S.P., Duggan, P.J. & Duggan, S.A. Highly Fructose Selective Transport Promoted by Boronic Acids Based on a Pentaerythritol Core. Organic Letters 3(6), 917-920 (2001). [ Links ]

23. Donaldr, B., Ichardc, T. & Christensen, W. Epimerization and fragmentation of glucose by quaternary ammonium base type anion exchange resins, Farben Industrie, A.G. German patent 634,408 (Agosto 1936). [ Links ]

24. Kolaric, S. & Šunjic, V. Comparative study of C(2) epimerization of D-glucose and D-mannose catalyzed by water soluble organometallic complexes with nitrogen ligands, Journal of Molecular Catalysis A: Chemical 110, 181-188 (1996). [ Links ]

25. Brunner, H. & Opitz, D. Epimerization of glucose and mannose in the presence of nickel complexes of optically active ligands. Journal of Molecular Catalysis A: Chemical 118, 273-282 (1997). [ Links ]

26. Tanase, T., Takei, T., Hidai, M. & Yanoa, S. Substrate-dependent chemoselective aldose-aldose and aldose-ketose isomerizations of carbohydrates promoted by a combination of calcium ion and monoamines. Carbohydrate Research 333, 303-312 (2001). [ Links ]

27. Hodge, J. The Amadori Rearrangement. Advances in Carbohydrate Chemistry 10, 169-205 (1955). [ Links ]

28. Huyghues-Despointes, A. & Yaylayan, V.A. Kinetics of formation and degradation of morpholino-1-deoxy-d-fructose, in Flavor Technology: Physical Chemistry, Modification, and Process. (eds. Tong, C.H., Tan, C.T. & Ho, C.T.) 20-30 (ACS Symposium Series No. 610, American Chemical Society, Washington, DC, 1995). [ Links ]

29. Wrodnigg, T.M., Kartusch, C. & Illaszewicz, C. The Amadori rearrangement as key reaction for the synthesis of neoglycoconjugates. Carbohydrate Research 343, 2057-2066 (2008). [ Links ]

30. Huyghues, A. & Yaylayan, W. Kinetic Analysis of Formation and Degradation of 1-Morpholino-1-deoxy-D-fructose. Journal Agriculture Food Chemistry 44, 1464-1469 (1996). [ Links ]

31. Jones, N.A. et al. Synthesis of and NMR studies on the four diastereomeric 1-deoxy-D-ketohexoses. Tetrahedron: Asymmetry 18, 774-786 (2007). [ Links ]

32. Brehm, M., Gockel, W.H, Jarglis, P. & Lichtenthaler, F.W. Expedient conversion of D-glucose into 1,5-anhydro-Dfructose and into single stereogenic-center dihydropyranones, suitable six-carbon scaffolds for concise syntheses of the softcoral constituents - bissetone and palythazinel. Tetrahedron: Asymmetry 19, 358-373, 2008. [ Links ]

33. Lichtenthaler, F.W., El Ashry, E.S.H. & Gockel, V.H. A convenient access to 1,5-anhydroketoses. Tetrahedron Letters 21(15), 1429-1432, (1980). [ Links ]

34. March, J. AdvancedOrganic Chemistry . 4. edition (John Wiley & Sons, USA, 1992). [ Links ]

35. Amrein, T.M., Andres, L., Manzardo, G.G & Amad, R. Investigations on the Promoting Effect of Ammonium Hydrogencarbonate on the Formation of Acrylamide in Model Systems. Journal Agriculture Food Chemistry 54, 10253-10261 (2006). [ Links ]

36. Barnett, J. & Reichstein, T. d- und l-Tagato-methylose. Helvetica Chimica Acta 20, 1529-1536 (1937). [ Links ]

37. Percival, E. The Structure and Reactivity of the Hydrazone and Osazone Derivatives of the Sugars, Advances in Carbohydrate Chemistry 3, 23-44 (1948). [ Links ]

38. Bayne, S. & Fewster, J. The Osones. Advances in Carbohydrate Chemistry 11, 43-96 (1956). [ Links ]

39. Hough, L., Priddle, J. & Theobald, R. The Carbonates and Thiocarbonates of Carbohydrates, Advances in Carbohydrate Chemistry 15, 91-158 (1960). [ Links ]

40. El Khadem, H. Chemistry of osazones. Advances in Carbohydrate Chemistry 20, 139-180 (1965). [ Links ]

41. Geissman, T.A. Principles ofOrganic Chemistry . Tercera Edición. (W.H Freeman & Company, San Francisco, 1974). [ Links ]

42. Mc Murry, J. Química Orgánica. 7a. edición. (Cengage Learning, 2008). [ Links ]

43. Amon, Jr. et al. Process for D-production of D-glucosone, United States Patent, Cetus Corporation, Berkeley California 4,423,149 (1983). [ Links ]

44. Binder, J.B., & Raines, R.T. Simple Chemical Transformation of Lignocellulosic Biomass into Furans for Fuels and Chemicals. Journal American Chemical Society 131, 1979-1985 (2009). [ Links ]

45. Yao, C. et al. Hydrothermal Dehydration of Aqueous Fructose Solutions in a Closed System. Journal of Physical Chemistry 111(42), 15141-15145 (2007). [ Links ]

46. El Seoud, O.A., Koschella, A., Fidale, L.C., Dorn, S. & Heinze, T. Applications of Ionic Liquids in Carbohydrate Chemistry: A Window of Opportunities. Biomacromolecules 8(9), 2629-2647 ( 2007). [ Links ]

47. Geissman, T.A. Principios de Química Orgánica. Segunda Edición (Editorial Reverté S.A., España, 1973). Páginas 536-537. [ Links ]

48. Sievers, C. et al. Ionic-Liquid-Phase Hydrolysis of Pine Wood, Industrial Engineering Chemical Research 48(3), 1277-1286 (2009). [ Links ]

49. Moreau, C., Durand, R., Duhamet, J. & Rivalier, P. Hydrolysis of Fructose and Glucose Precursors in the Presence of H-form Zeolites. Journal of Carbohydrate Chemistry 16(4,5), 709-714 (1997). [ Links ]

50. Heper, M., Turker, L. & Kiincal, N.S., Sodium, ammonium, calcium and magnesiun forms of zeolite y for the adsorption of glucose and fructose from aqueos solutions. Journal of colloid interface science 306, 11-15 (2007). [ Links ]

51. Moreau, C., Durand, R., Roux, A. & Tichit, D. Isomerization of glucose into fructose in the presence of cation-exchanged zeolites and hydrotalcites. Applied Catalysis A: General 193, 257-264 (2000). [ Links ]

52. Masaru, W. et al. Glucose reactions with acid and base catalysts in hot compressed water at 473 K. Carbohydrate Research 340(12), 1925-1930 (2005). [ Links ]

53. Nagorski, R.W. & Richard, J.P. Mechanistic Imperatives for Aldose-Ketose Isomerization in Water: Specific, General Base- and Metal Ion-Catalyzed Isomerization of Glyceraldehyde with Proton and Hydride Transfer. Jounal American Chemical Society 123(5), 794-802 (2001). [ Links ]

54. Lima, S. et al. Isomerization of D-glucosa to D-fructosa over metallosilicate solid bases. Applied Catalysis A: General 339, 21-27 (2008). [ Links ]

Recibido: 02 de Octubre de 2009; Aprobado: 11 de Noviembre de 2009

Creative Commons License Este es un artículo publicado en acceso abierto bajo una licencia Creative Commons