SciELO - Scientific Electronic Library Online

 
vol.12 número1Evidencia ultraestructural del nucléolo de Entamoeba histolytica índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


TIP. Revista especializada en ciencias químico-biológicas

versión impresa ISSN 1405-888X

TIP vol.12 no.1 Ciudad de México jun. 2009

 

Nota científica

Anticuerpos dirigidos a pequeñas moléculas de neurotransmisores y péptidos: producción y aplicación de anticuerpos a dopamina, serotonina, GABA, vasopresina, péptido vasoactivo intestinal, neuropéptido Y, somatostatina y sustancia P

Ruud M. Buijs1 

Ma. del Carmen Basualdo S.1 

1 Instituto de Investigaciones Biomédicas, UNAM. C.P. 04510, México, D.F. México. E-mail: buijs@biomedicas.unam.mx


Resumen:

En el presente trabajo se describe un procedimiento por medio del cual pueden ser obtenidos anticuerpos a partir de moléculas pequeñas de neurotransmisores usando glutaraldehido como agente acoplador. Este procedimiento fue desarrollado bajo la condición de que el inmunógeno usado para la preparación del anticuerpo fuera, hasta donde fuese posible, de la misma identidad que la molécula transmisora fijada al tejido. Con el de fin de lograr mayor éxito, los péptidos, aminas o aminoácidos1 fueron conjugados a una proteína acarreadora usando glutaraldehido. Los anticuerpos obtenidos fueron usados en estudios de inmunohistoquímica permitiendo la detección de estos transmisores después de un proceso de fijación con glutaraldehido o paraformaldehido para los péptidos.

Palabras Clave: Anticuerpos contra neurotrasmisores; anticuerpos frente a pequeñas moléculas; neurotrasmisores; péptidos; producción de anticuerpos

Abstract:

In the present paper a procedure is described by which antibodies to small transmitter molecules can be obtained using glutaraldehyde as coupling reagent. This procedure was developed based on the condition that the immunogen used for the preparation of the antibody should, as much as possible, have the same identity as the transmitter molecule fixed in the tissue. In order to achieve this goal, aminergic, amino acid, or peptidergic transmitters were conjugated to a carrier protein by using glutaraldehyde. The resulting antibodies could be used in an immunocytochemical procedure which allowed the detection of these transmitters together with peptides after a single tissue fixation procedure with glutaraldehyde or paraformaldehyde.

Keywords: Antibodies to neurotransmitters; antibodies to small molecules; neurotransmitters; peptides; antibodies to small transmitter molecules

Texto completo disponible sólo en PDF.

Texto completo disponível apenas em PDF.

Full text available only in PDF format.

Referencias

1. Carlsson, A., Falck, B., Hillarp, N.A., Thieme, G. & Torp, A. A new histochemical method for visualization of tissue catechol amines. Med. Exp. Int. J Exp. Med. 4, 123-125 (1961). [ Links ]

2. Falck, B., Hillarp, N.A., Thieme, G. & Torp, A. Fluorescence of catechol amines and related compounds condensed with formaldehyde. Brain Res. Bull. 9, 11-15 (1982). [ Links ]

3. Landsteiner, K. & Van der Scheer, J. The specificity of serological reactions. J.Exp.Med. 63, 325-338 (2009). [ Links ]

4. Geffard, M., Buijs, R.M., Seguela, P., Pool, C.W. & Le Moal, M. First demonstration of highly specific and sensitive antibodies against dopamine. Brain Res 294, 161-165 (1984). [ Links ]

5. Seguela, P., Geffard, M., Buijs, R.M. & Le Moal, M. Antibodies against gamma-aminobutyric acid: specificity studies and immunocytochemical results. Proc. Natl. Acad Sci. U. S A. 81, 3888-3892 (1984). [ Links ]

6. Steinbusch, H.W., Verhofstad, A.A. & Joosten, H.W. Localization of serotonin in the central nervous system by immunohistochemistry: description of a specific and sensitive technique and some applications. Neuroscience 3, 811-819 (1978). [ Links ]

7. Storm-Mathisen, J. et al. First visualization of glutamate and GABA in neurones by immunocytochemistry. Nature 301, 517-520 (1983). [ Links ]

8. Pool, C.W. & Buijs, R.M. Antigen identity in immunocytochemistry. Van Leeuwen, F.W., Buijs, R.M., Pool, C.W. & Pach, O. Molecular Neuroanatomy, 233-266 (2009). [ Links ]

9. Pool, C.W. & Buijs, R.M. Antigen identity in immunocytochemistry. Van Leeuwen, F.W., Buijs, R.M., Pool, C.W. & Pach, O. Molecular Neuroanatomy, 233-266 (1988). [ Links ]

10. Bowes, J.H. & Cater, C.W. The interaction of aldehydes with collagen. Biochim. Biophys. Acta. 168, 341-352 (1968). [ Links ]

11. Habeeb, A.J. & Hiramoto, R. Reaction of proteins with glutaraldehyde. Arch. Biochem. Biophys. 126, 16-26 (1968). [ Links ]

12. Riederer, B.M. Antigen preservation tests for immunocytochemical detection of cytoskeletal proteins: influence of aldehyde fixatives. J Histochem. Cytochem. 37, 675-681 (1989). [ Links ]

13. Lillie, R.D. & Pizzolato, P. Histochemical use of borohydrides as aldehyde blocking reagents. Stain Technol. 47, 13-16 (1972). [ Links ]

14. Mallon, F.M., Graichen, M.E., Conway, B.R., Landi, M.S. & Hughes, H.C. Comparison of antibody response by use of synthetic adjuvant system and Freund complete adjuvant in rabbits. Am J Vet. Res. 52, 1503-1506 (1991). [ Links ]

15. Smith, D.E., O’Brien, M.E., Palmer, V.J. & Sadowski, J.A. The selection of an adjuvant emulsion for polyclonal antibody production using a low-molecular-weight antigen in rabbits. Lab Anim Sci. 42, 599-601 (1992). [ Links ]

16. Buijs, R.M., Van D., V, Garidou, M.L., Huitinga, I. & Escobar, C. Spleen vagal denervation inhibits the production of antibodies to circulating antigens. PLoS. ONE. 3, e3152 (2008). [ Links ]

17. Van Der Sluis, P.J., Pool, C.W. & Sluiter, A.A. Pressblotting on nitrocellulose membranes: A method for a sensitive quantitative immunodetection of peptides after gel isoelectric focusing. J. Immunol. Methods 104, 65-71 (1987). [ Links ]

18. Van Der Sluis, P.J., Pool, C.W. & Sluiter, A.A. Immunochemical detection of peptides and proteins on press-blots after direct tissue gel isoelectric focussing. Electrophoresis 9, 654-661 (1988). [ Links ]

19. Buijs, R.M., Wortel, J. & Hou, Y.X. Colocalization of gammaaminobutyric acid with vasopressin, vasoactive intestinal peptide, and somatostatin in the rat suprachiasmatic nucleus. J. Comp. Neurol. 358, 343-352 (1995). [ Links ]

20. Voorn, P. & Buijs, R.M. An immuno-electronmicroscopical study comparing vasopressin, oxytocin, substance P and enkephalin containing nerve terminals in the nucleus of the solitary tract of the rat. Brain Res 270, 169-173 (1983). [ Links ]

21. Beauvillain, J.C. & Tramu, G. Immunocytochemical demonstration of LH-RH, somatostatin, and ACTH-like peptide in osmiumpostfixed, resin-embedded median eminence. J Histochem. Cytochem. 28, 1014-1017 (1980). [ Links ]

22. Shioda, S., Nakai, Y., Ochiai, H., Nakada, H. & Sano, Y. Simultaneous identification of two different neuropeptides using a combined PAP and protein A-gold technique in the rat neurohypophysis. J Electron Microsc. (Tokyo ). 33, 72-75 (1984). [ Links ]

23. Somogyi, P., Hodgson, A.J., Chubb, I.W., Penke, B. & Erdei, A. Antisera to gamma-aminobutyric acid. II. Immunocytochemical application to the central nervous system. J Histochem. Cytochem. 33, 240-248 (1985). [ Links ]

24. Buijs, R.M., van Vulpen, E.H. & Geffard, M. Ultrastructural localization of GABA in the supraoptic nucleus and neural lobe. ns 20, 347-355 (1987). [ Links ]

Recibido: 12 de Mayo de 2009; Aprobado: 09 de Junio de 2009

Creative Commons License Este es un artículo publicado en acceso abierto bajo una licencia Creative Commons