SciELO - Scientific Electronic Library Online

 
vol.9 número1Observaciones sobre la estructura del núcleo de células del meristemo de raíz de cebolla (Allium cepa L.) con el microscopio de fuerza atómicaContenido de metales pesados en suelos superficiales de la Ciudad de México índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


TIP. Revista especializada en ciencias químico-biológicas

versión impresa ISSN 1405-888X

TIP vol.9 no.1 Ciudad de México jun. 2006

 

Artículos de revisión

Consecuencias fisiológicas de la oxidación de proteínas por carbonilación en diversos sistemas biológicos

Psycological consequenses of protein oxidation by carbonylation in different biological models

Alondra E. Díaz-Acosta1  * 

Jorge Membrillo-Hernández1  ** 

1Lab. de Microbiología y Genética Molecular, Depto. de Biología Moleculary Biotecnología, Instituto de Investigaciones Biomédicas, UNAM. СР. 04510, México, D.F.


Resumen

El metabolismo celular aerobico, al utilizar dioxígeno como último aceptor de electrones en la cadena respiratoria causa inevitablemente la producción de Especies Reactivas de Oxígeno (EROs) que oxidan cualquier macromolécula a su alcance (DNA, lípidos y proteínas). La investigación de los mecanismos de oxidación de proteínas se ha intensificado en los últimos 20 años debido a la creciente evidencia que ha correlacionado procesos como el envejecimiento y diversas patologías humanas con el aumento de la oxidación proteica. Las proteínas sufren varios tipos de oxidación; una de ellas, la formación de grupos carbonilo, ha sido utilizada metodológicamente para evaluar el grado de daño oxidativo en diferentes sistemas biológicos. A pesar de que se desconocen los mecanismos que vinculan oxidación proteica y procesos como proteólisis, apoptosis y reproducción nos encontramos cerca de descubrir el papel de la oxidación proteica en la fisiología celular.

Palabras Clave: Envejecimiento; Especies Reactivas de Oxígeno; estrés oxidativo; oxidación; proteólisis

Abstract

Production of Reactive Oxygen Species (ROS) is an unavoidable consequence of the aerobic metabolism. Due to the accumulating experimental data relating protein oxidation to cell processes such as ageing and diverse human diseases, research in this area has been greatly increased. Proteins undergo different types of oxidative modifications, in particular, the formation of carbonyl groups, has been extensively used in the studies focused on the determination of the extent of protein damage. Despite the fact that the mechanisms linking protein oxidation and cellular processes such as proteólisis, apoptosis or reproduction have yet to be elucidated, we are close to understand the role of protein oxidation in cell physiology.

Key Words: Ageing; Reactive Oxygen Species; oxidative stress; oxidation; proteolisis

Texto completo disponible sólo en PDF.

Texto completo disponível apenas em PDF.

Full text available only in PDF format.

Referencias

1. Halliwell, В. & Gutteridge, J. Free Radicals in Biology and Medicine (Oxford University Press, Nueva York, 1999). [ Links ]

2. Imlay, J.A. Pathways of oxidative damage. Annu. Rev. Microbiol. 57:395-418 (2003). [ Links ]

3. Hansberg, W. Biología de las especies de oxígeno reactivas. Mensaje Bioquímico.XXVI:19-54 (2002). [ Links ]

4. Hansberg, W. La biología del dioxígeno en singulete. TIP Revista Especializada en Ciencias Químico-Biológicas. 2(2) :47-55 (1999). [ Links ]

5. Dukan, S., et al. Protein oxidation in response to increased transcriptional or translational errors. Proc.Natl.Acad.Sci. U.S.A. 97:5746-5749 (2000). [ Links ]

6. Dukan, S. & Nyström, T. Bacterial senescence: stasis results in increased and differential oxidation of cytoplasmic proteins leading to developmental induction of the heat shock regulon. Genes Dev. 12:3431-3441 (1998). [ Links ]

7. Dukan, S. & Nyström, T. Oxidative stress defense and deterioration of growth-arrested Escherichia coli cells. J. Biol. Chem. 274:26027-26032 (1999). [ Links ]

8. Ji, L.L., Dillon, D. & Wu, E.. Alteration of antioxidant enzymes with aging in rat skeletal muscle and liver. Am. J. Physiol 258: 918-923 (1990). [ Links ]

9. Nyström, T. Translational fidelity, protein oxidation and senescence: lessons from bacteria. Aging Res. Rev. 1:693-703 (2002) . [ Links ]

10. Stadtman, E.R. Protein oxidation and aging. Science 257: 1220-1224 (1992). [ Links ]

11. Stadtman, E.R. & Levine, R.L. Protein oxidation. Ann. N.Y. Acad. Sci. 899:191-208 (2000). [ Links ]

12. Desmyter, L., et al. Expression of the human feritin light chain in a budding yeast fraxatin mutant affects aging and cell death. Exp.Gerontol. 39:707-715 (2004). [ Links ]

13. Aguilaniu, H., Gustafsson, L., Rigoulet, M. & Nyström, T. Protein oxidation in G0 cells of Saccharomyces cerevisiae depends on the state rather than the rate of respiration and is enhanced in pos9 but not jap; mutants. J.Biol.Chem. 276:35396-35404 (2001). [ Links ]

14. Friguet, В., Bulteau, A.L., Chondrogianni, N, Conconi, M. & Petropoulos, I. Protein degradation by the proteasome and its implications in aging. Ann. N. Y. Acad. Sci. 908:143-154 (2000). [ Links ]

15. Sitte, N., Merker, K, Von Zglinicki, T., Grane, T. & Davies, K.J.A. Protein oxidation and degradation during cellular senescence of human В J fibroblasts: part I-effects of proliferatives senescence. FASEB J. 14:2495-2502 (2000). [ Links ]

16. Shringarpure, R. & Davies, K.J. Protein turnover by the proteasome in aging and disease. Free Rad Biol. Med 32:1084-1089 (2002). [ Links ]

17. Ballesteros, M., Fredriksson, A. Henriksson, J. & Nyström, T. Bacterial senescence: protein oxidation in non-proliferating cells is dictated by the accuracy of the ribosomes. EMBO J. 20:5280-5289 (2001). [ Links ]

18. Sies, H. Damage to plasmid DNA by singlet oxygen and its protection. Mutat. Res. 299:183-191 (1993). [ Links ]

19. Sies, H. & Menck, CF. Singlet oxygen induced DNA damage. Mutat.Res. 275:367-375 (1992). [ Links ]

20. Humphries, K.M. & Sweda, L.I. Selective inactivation of a ketoglutarate deshydrogenase: reaction of lipoic acid with 4-hydroxy-2-nonenal. Biochemistry 37:15835-15841 (1998). [ Links ]

21. Esterbauer, H., Schaur, R.J. & Zollner, H. Chemistry and biochemistry of4-hydroxynonenal, malonaldehyde and related aldehydes. Free Rad.Biol.Med. 11:81-128 (1991). [ Links ]

22. Dakin, H.D. The oxidation of aminoàcids with the production of substances of biological importance. J.Biol. Chem. 1:171-176 (1906). [ Links ]

23. Dean, R.T., Fu, S., Stocker, R. & Davies, M.J. Biochemistry and pathology of radical-mediated protein oxidation. Biochem J. 324:1-18 (1997). [ Links ]

24. Berlett, B.S. & Stadtman, E.R. Protein oxidation in aging, disease, and oxidative stress. J.Biol.Chem 272:20313-20316 (1997). [ Links ]

25. Garrison, W.M. Reaction mechanisms in the radiolysis of peptides, polypeptides and proteins. Chem.Rev. 87:381-398 (1987). [ Links ]

26. Davies, M.J. Protein and peptide alkoxyl radicals can give rise to C-terminal decarboxylation and backbone cleavage. Arch.Biochem.Biophys. 336:163-172 (1996). [ Links ]

27. Stadtman, E.R. & Oliver, C.N. Metal-catalyzed oxidation of proteins. Physiological consequences. J.Biol. Chem. 266:2005-2008 (1991). [ Links ]

28. Heinecke, J.W. Biochemical evidence for a link between elevated levels of homocysteine and lipid peroxidation in vivo. Curr.Atheroscler.Rep. 2:87-89 (1999). [ Links ]

29. Lewisch, S.A. & Levine, R.L. Determination of 2-oxohistidine by aminoacid analysis. Annal.Biochem. 231:440-446 (1995). [ Links ]

30. Levine, R.L., Berlett, B.S., Moskovitz, J., Mosoni, L. & Stadtman, E.R. . Methionine residues may protect proteins from critical oxidative damage. Mech. Ageing Dev. 107:323-332 (1999). [ Links ]

31. Requena, J.R., Levine, R.L. &Stadtman, E.R . Recent advances in the analysis of oxidized proteins. Amino acids 25:221-226 (2003). [ Links ]

32. Davies, M.J.A. The oxidative environment and protein damage. Biochem.Biophys.Acta 1703:93-109 (2005). [ Links ]

33. Cabiscol, E., Tamarit, J. & Ros, J. Oxidative stress in bacteria and protein damage by reactive oxygen species. Intematl.Microbiol. 3:3-8 (2000). [ Links ]

34. Nyström, T. Role of oxidative carbonylation in protein quality controland senescence. EMBO J. 24:1311 1317 (2005). [ Links ]

35. Dalle-Donne, I., Giustarini, D., Colombo, R., Rossi, R. & Milzani, A. Protein carbonylation in human diseases. TRENDS in Molecular Medicine. 9:169-176 (2003). [ Links ]

36. Tamarit, J., Cabiscol, E. & Ros, J. Identification of the major oxidatively damaged proteins in Escherichia coli cells exposed to oxidative stress. J.Biol.Chem. 273:3027-3032 (1998). [ Links ]

37. Johansson, E., Olsson, O. & Nyström, T. Progression and specificity of protein oxidation in the life cycle of Arabidopsis thaliana. J.Biol.Chem. 279:22204-22208 (2004). [ Links ]

38. Castegna, Α., et al. Protein identification of oxidatively modified proteins in Alzheimer's disease brain. Part I: creatine kinase BB, glutaminę synthase, and ubiquitin carboxy-terminal hydrolase L-1. Free Rad.Biol.Med. 33:562-571 (2002). [ Links ]

39. Prinz, W.A., Aslund, F., Holmgren, Α. & Beckwith, J. The role of the thioredoxin and glutaredoxin pathways in reducing protein disulfide bonds in the Escherichia coli cytoplasm. J.Biol. Chem. 272:15661-15667 (1997). [ Links ]

40. Aslund, F. & Beckwith, J. Bridge over troubled waters: sensing stress by disulfide bond formation. Cell. 96:751-753 (1999). [ Links ]

41. Etienne, F., Spector, D., Brot, Ν. & Weissbach, Η. A methionine sulfoxide reductase in Escherichia coli that reduces the R enantiomer of methionine sulfoxide. Biochem.Biophys.Res. Commun. 300:378-382 (2003). [ Links ]

42. Spector, D., Etienne, F., Brot, N. & Weissbach, H. New membrane-associated and soluble peptide methionine sulfoxide reductases in Escherichia coli. Biochem.Biophys.Res. Commun. 302 : 284-289 (2003). [ Links ]

43. Picot, CR., Perichon, M., Cintrat, J.C, Friguet, B. & Petropoulos, I. The peptide methionine sulfoxide reductases, MsrA and MsrB (hCBS-1), are downregulated during replicative senescenceofhumanWI-38fibroblasts.. FEBS Lett. 558:74-78 (2004). [ Links ]

44. Sharov, V.S. & Schoneich, C. Diastereoselective protein methionine oxidation by reactive oxygen species and diastereoselective repair by methionine sulfoxide reductase. Free.Rad.Biol.Med. 29:986-994 (1999). [ Links ]

45. Sharov, V.S., Ferrington, T.C., Squier, C. & Schoneich, C. Diastereoselective reduction of protein-bound methionine sulfoxide reductase. FEBS Lett. 455:247-250 (1999). [ Links ]

46. Levine, R.L. , Mosoni, L. , Berlett, B.S. & Stadtman, E. Methionine residues as endogenous antioxidants in proteins. Proc.Natl.Acad.Sci. U.S.A. 93:15036-15040 (1996). [ Links ]

47 . Shacter, E. Quantification and significance of protein oxidation in biological simples. Drug Metab. Rev., 32:307-326 (2000). [ Links ]

48. Beal, M.F. Oxidatively modified proteins in aging and disease, Free Rad. Biol. Med. 32:797-803 (2002). [ Links ]

49. Echave, P et al. DnaK dependence of mutant ethanol oxidoreduc tases evolved for aerobic function and protective role of the chaperone against protein oxidative damage in Escherichia coli. Proc.Natl.Acad.Sci. U.S.A. 99:4626 4631 (2002). [ Links ]

50. Winter, J., Linke, K., Jatzek, A. & Jacob, U. Severe oxidative stress causes inactivation of DnaK and activation of the redox-regulated chaperone Hps33. Mol. Cell 17:381-392 (2005). [ Links ]

51. Díaz-Acosta, Α., Sandoval, M.L., Delgado-Olivares, L. & Membrillo-Hernández, J. Effect of anaerobic and stationary phase growth conditions on the heat shock and oxidative stress responses in Escherichia Сoli K-12. Arch. Microbiol. 185:429-438 (2006). [ Links ]

52. Fredriksson, Α., Ballesteros, M., Dukan, S & Nyström, T. Induction of the heat shock regulon in response to increased mistranslation requires oxidative modification of the malformed proteins. Mol. Micro. 59:350-359 (2005). [ Links ]

53. Rivett, A.J. Purification of a liver alkaline protease which degrades oxidatively modified glutamine synthetase. Characterization as a high molecular weight cysteine proteinase. J. Biol. Chem. 260:12600-12606(1985). [ Links ]

54. Rivett, A.J. Preferential degradation of the oxidatively modified form of glutamina synthetase by intracellular mammalian porteases. J.Biol.Chem. 260:300-305 (1985). [ Links ]

55. Davies, K.J.A. & Lin, S,W . Degradation of oxidatively denatured proteins in Escherichia coli. Free Rad.Biol.Med. 5:215-223 (1988). [ Links ]

56. Davies, K.J.A. & Lin, S,W . Oxidatively denatured proteins are degraded by an ATP independent proteolytic pathway in Escherichia coli. Free Rad.Biol.Med 5:225-236 (1988). [ Links ]

57. Davies, K.J.A. Protein damage and degradation by oxygen radicals. I. general aspects. J.Biol.Chem. 262:9895-9901 (1987). [ Links ]

58. Pacifici, R.E., Salo, D.C. & Davies, K.J.A. Macroxyproteinase (M.O.P.): a 670 kDa proteinase complex that degrades oxidatively denatured proteins in red blood cells. Free Radical Biol. &Med. 7:521-536 (1989). [ Links ]

59. Marcilat, O., Zhang, Y., Lin, S.W. & Davies, K.J.A. Mitochondria contain a proteolytic system which can recognize and degrade oxidatively-denatured proteins Biochem.J. 254:677-683 (1988). [ Links ]

60. Iwai, K., et al. Iron-dependent oxidation, ubiquitination, and degradation of iron regulatory protein 2: Implications for degradation of oxidized proteins. Proc.Natl.Acad.Sci. U.S.A. 93:15036-15040 (1988). [ Links ]

61. Grune, T., Reinheckel, T. &Davies, K.J.A . Degradation of oxidized proteins in mammalian cells. FASEB J. 11:526-534 (1997). [ Links ]

62. Roseman, J.E. & Levine, R.L. Purification of a protease from Escherichia coli with specificity for oxidized glutamine synthetase, J.Biol.Chem. 262:2101-2110 (1987). [ Links ]

63. Rivett, A.J. &Levine, R.L. Metal catalyzed oxidation of Escherichia coli glutamine synthetase: correlation of structural and functional changes. Arch.Biochem.Biophys. 278:26-34 (1990). [ Links ]

64. Bota, D.A, Van Remmen, H. &Davies, K.J.A . Modulation of Lon protease activity and aconitase turnover during aging and oxidative stress. FEBS Lett. 532:103-106 (2002). [ Links ]

65. Grune, T. , Jung, T., Merker, K. &Davies, K.J.A . Decreased proteólisis caused by protein aggregates inclusion bodies, plaques, lipofuscin, ceroid and aggresomes during oxidative stress. Aging and disease. Int.J.Biochem.Cell Biol. 36:2519-2530 (2004). [ Links ]

66. Grune, T. , Merker, K. , Sandig, G. &Davies, K.J.A . Selective degradation of oxidatively modified protein substrates by the proteasome. Biochem.Biophys.Res.Commun. 305:709-718 (2003). [ Links ]

67. Oliver, C.N., Ahn, B.W., Moerman, E.J., Goldstein, S. &Stadtman, E.R . Oxidative damage to brain proteins, loss of glutaminę synthetase activity, and production of free radicals during ischemia/reperfusion-induced injurу to gerbil brain. J.Biol. Chem. 262:5488-5491 (1987). [ Links ]

68. Desnues, В., Gregori, G.,Dunkan,S., Aguilaniu, H. & Nyström, T. Differential oxidative damage and expression of stress régulons in culturable and nonculturable Escherichia coli cells. EMBO Rep. 4:400-405 (2003). [ Links ]

69. Aguilaniu, H., Gustafsson, L., Rigoulet, M. & Nyström, T. Asymmetric inheritance of oxidatively damaged proteins during cytokinesis in Saccharomyces cerevisiae: a Sir2p dependent mechanism. Science 299:1751-1753 (2003). [ Links ]

70. Guarente, L. Sir2 links chromatin silencing, metabolism, and aging. Genes Dev. 14:1021-1026 (2000). [ Links ]

71. Tissenbaum, H.A. & Guarente, L. Increased dosage of a sir-2 gene extends lifespand in Caenorhabditis elegans. Nature 410:227-230 (2001). [ Links ]

72. Sinclair, D.A. Paradigms and pitfalls of yeast longevity research Mech. Ageing Dev. 123:857-867 (2002). [ Links ]

73. Rogina, B. & Helfand, S.L. Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc.Natl.Acad.Sci. U.S.A. 101:15998-16003 (2004). [ Links ]

74. Oliver, C.N. Inactivation of enzymes and oxidative modification of proteins by stimulated neutrophils. Arch.Biochem.Biophys. 253:62-72 (1987). [ Links ]

75. Cakatay, U., et al. Oxidative protein damage in type 1 diabetic pacients with andwithoutcomplications. Endocr.Res. 26:365-379 (2000). [ Links ]

76. Telci, A., et al. Oxidative protein damage in plasma of type 2 diabetic patients. Horm.Metabol.Res. 32:40-43 (2000). [ Links ]

77. Himmelfarb, J., et al. Plasma protein oxidation and carbonyl formation in chronic renal failure. Kidney Int. 58:2571-2578 (2000). [ Links ]

78. Himmelfarb, J. & McMonagle, E. Albumin is the majot plasma protein target of oxidant stress in uremia. Kidney Int. 60:358-363 (2001). [ Links ]

79. Mattson, M.P. Pathways towards and away from Alzheimer's disease. Nature. 430:631-639 (2004). [ Links ]

80. Castegna, A., et al. Proteomic identification of oxidatively modified proteins in Alzheimer 's disease brain Part I: creatine kinase BB, glutamine synthase, and ubiquitin carboxy-terminal hydrolase L-l. Free Rad.Biol.Med. 33:562-571 (2002). [ Links ]

81. Castegna, A., et al. Proteomic identification of oxidatively modified proteins in Alzheimer's disease brain Part II: dihydropyrimidinasa-related protein 2, α-enolase and heat shock cognate 71. J Neurochem. 82:1524-1532 (2002). [ Links ]

82. Bosnia, F., et al. Protein oxidation and lens opacity in humans. Invest. Ophtalmol.Vis.Sci 41:2461-2465 (2000). [ Links ]

Recibido: 16 de Mayo de 2006; Aprobado: 20 de Junio de 2006

Creative Commons License Este es un artículo publicado en acceso abierto bajo una licencia Creative Commons