SciELO - Scientific Electronic Library Online

 
vol.9 número1Mecanismo químico de transformaciones radiolíticas y pirolíticas en lexan ®Espectroscopía y teoría de la regioquímica en la nitración de las benzopiridinas índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


TIP. Revista especializada en ciencias químico-biológicas

versión impresa ISSN 1405-888X

TIP vol.9 no.1 Ciudad de México jun. 2006

 

Artículos originales

Distribución atómica y morfología de las micelas de soles precursores de boehmita, bismutinita, hidrotalcita y rutilo

Atomic distribution and morphology of the micelles in sols precursors of boehmite, bismuthinite, hydrotalcite and rutile

Хіm Bokhimi1  * 

Marina Vega-González1 

Antonio Morales1 

1Instituto de Física, UNAM. Apdo. Postal 20-364, CP. 01000, México, D.F.


Resumen

Se prepararon soles precursores de boehmita, bismutinita, hidrotalcita y rutilo. Las micelas de estos soles se analizaron mediante difracción de rayos X y microscopía electrónica de transmisión. En todos los casos las micelas fueron nanocápsulas con diámetros entre 20 y 100 nm y paredes entre 3 y 4 nm de espesor, con sus átomos formando cúmulos arreglados sin simetría traslacional. Cuando las micelas interactúan entre sí, en la región en contacto, los átomos, inicialmente ordenados en cúmulos, se reordenan formando la estructura cristalina de la fase de la cual el sol es precursor. Esta interacción entre micelas produjo su agregación para dar origen a estructuras tridimensionales porosas o a estructuras unidimensionales, precursoras de nanotubos y nanobarras, o de redes tridimensionales que finalmente pueden generar un gel.

Palabras Clave: Cristalización; interacción entre micelas; micelas; nanocápsulas; sol

Abstract

Sols of boehmite, bismuthinite, Hydrotalcite and rutile were prepared. The micelles of the sols were characterized by using X-ray powder diffraction and transmission electron microscopy. For all sols, the micelles were nanocapsules with diameters between 20 and 100 nm and a shell thickness between 3 and 4 nm, where the atoms formed clusters that ordered with a non-translational symmetry. When the micelles interacted each other, the atoms in the capsules shells changed their ordering from the one in the atomic clusters into the one that corresponds to the crystalline structure of the phase from which the sol was precursor. The interaction between the nanocapsules produced their aggregation to build porous three-dimensional structures, or one-dimensional structures that transformed into nanotubes, nanobars, or into three-dimensional nets that eventually form a gel.

Key Words: Crystallization; interaction between micelles; micelles; nanocapsules; sol

Texto completo disponible sólo en PDF.

Texto completo disponível apenas em PDF.

Full text available only in PDF format.

Referencias

1. Wakai, H. et al. Ultrahigh density HfO2 nanodots for flash memory scaling. Jap. J. Applied Phys. 45 2459-2462 (2006). [ Links ]

2. Shirai, Y., Osgood, A.J., Zhao, Y., Kelly, K.F. & Tour, J.M. Directional control in thermally driven single-molecule nanocars. Nano Letters 5, 2330-2334 (2005). [ Links ]

3. Buehler, T.M. et al. Single-shot readout with the radio-frequency single-electron transistor in the presence of charge noise. Appi. Phys. Zetters 86, 143117 (2005). [ Links ]

4. Bardeen, J. & Brattain, W.H. The transistor, a semi-conductor triode. Phys. Rev. 74, 230-231 (1948). [ Links ]

5. Pugh, E.W., Critchlow, D.L., Henle, R.A. & Russel, L.A. Solidstate memory development at IBM. IBM J. Res. Develop. 25,585-602 (1981). [ Links ]

6. Fleming, S J. Roman Glass : Reflections on cultural change (University of Pennsylvania museum of archeology and anthropology, Filadelfia, 1999). [ Links ]

7. Bokhimi, X. et al. Dependence of boehmite thermal evolution on its atom bond lengths and crystallite size. J. Solid State Chem. 161, 319-326 (2001). [ Links ]

8. Tsakalakos, T. Nanostructures: Synthesis, Functional Properties and Applications (Kluwer Academic Publishers, Massachusets 2003) [ Links ]

9. Rao, C.N.R., Müller, A. & Cheetham, A.K. The chemistry of nanomaterials: Synthesis, properties and applications (Wiley, Nueva York, 2004) . [ Links ]

10. Rehm, B.H.A. Microbial Bionanotechnology: Biological self- assembly systems and biopolymer-based nanostructures (Taylor & Francis, Londres , 2006). [ Links ]

11. Ranquin, A., Versees, W., Meier, W., Jan Steyaert, J. & Van Gelder, Ρ. Therapeutic nanoreactors : Combining chemistry and biology in a novel triblock copolymer drag delivery system. Nano Letters. 5, 2020-2024 (2005). [ Links ]

12. Varpness, Z., Peters, J.W., Young, N. & Douglas, T. Biomimetic synthesis of a H2 catalyst using a protein cage architecture. Nano Letters. 5, 2306-2309 (2005). [ Links ]

13. Livage, J. Sol-gel synthesis of heterogeneous catalysts from aqueous solutions. Catalysis Today 41, 3-19 (1998). [ Links ]

14. McBain, J.W. & Salmo, C.S. Colloidal electrolytes. Soap solutions and their constitution. J. Amer. Chem. Soc. 42, 426-460 (1920). [ Links ]

15. Livage, J. Sol-gelprocess. Enc. Inorg. Chem. 7, 3836-3857 (2000). [ Links ]

16. Brinker, C.J. & Scherer, G.W. Sol-gel science (Academic Press, Boston, 1990). [ Links ]

17. Zhang, Y., Xie, Q., Yin, F. & Yao, S. In situ momtoring of generation and precipitation of ferric hydroxide sol with a piezoelectric quartz crystal impedance analyzer. J. Colloid. Interface Sci. 236, 282-289 (2001). [ Links ]

18. Rodríguez-Carbajal, J. "Laboratoire Leon Brilloin (CEA-CNRS) " France. E-mail: juan@llb.saclay.cea.fr [ Links ]

19. Kara, M. & Kurki-Suonio, K. Symmetrized multipole analysis of orientational distributions. Acta Cryst. A 137, 201-210 (1981) . [ Links ]

20. Bokhimi, X., Valente, J. & Lima, E. Synthesis and characterization of nanocapsules with shells made up of Al13 tridecamers. J. Physical Chem. B 109, 22222-22227 (2005) . [ Links ]

21. Warren, Β.E. X-ray diffraction (Addison-Wesley, Massachusetts, 1969). [ Links ]

22. Bragg, W.H. & Bragg, W.L. The reflection of X-rays by crystals. Proc. Royal Soc. A 88, 428-433 (1913). [ Links ]

23. Debye, P. Zerstreuung von Röntgenstrahlen. Ann. Physik 46, 809-823 (1915) . [ Links ]

24. Johansson, G. On the crystal structure of the basic sulfate 13A1203. 6S04. xH2O. Ark Kemi 20, 321-342 (1963). [ Links ]

25. Singhal, A. & Keefer, KD. A study of aluminum speciation in aluminum chloride solution by small angle X-ray scattering and 27Al NMR. J. Mater. Res. 9, 1973-1983 (1994). [ Links ]

26. Kohatsu, I. & Wuensch, B.J. The crystal structure of Aikinite, PbCuBiS3. Acta Cryst. B 27, 1245-1252 (1971). [ Links ]

27. Young, R.A. The Rietveld Method (Oxford University Press, Nueva York, 1993). [ Links ]

28. Bokhimi, X., Morales, A. & Valente, J.S. Sulfate ions role in boehmite crystallization in a sol made with aluminum tri-secbutoxide and 2-propanol. J. Phys. Chem. B. submitted, February (2006). [ Links ]

29. Bokhimi, X.,Sánchez-Valente, J. & Pedraza, F. Crystallization of sol-gel boehmite via hydrothermal annealing. J. Solid State Chem. 166, 182-190 (2002). [ Links ]

30. Weissbuch, I., Popovitz-Biro, R., Lahav, M. & Leiserowitz, L. Understanding and control of nucleation, growth, habit, dissolution and structure of two- and three-dimensional crystals using 'tailor-made' auxiliaries. Acta Cryst. B 51,115-148 (1995). [ Links ]

31. Zhang, Z. & Pinnavaia, T.J. Mesostructured γ-Α12O3 with a lathlike framework morphology. J. Amer. Chem. Soc. 124, 12294-12301 (2002). [ Links ]

32. Toledo, J.A. et al. Synthesis of highly porous aluminas mediated by cationic surfactant: Structural and textural properties. J. Mater. Res. 20, 2947-2954 (2005). [ Links ]

Recibido: 26 de Mayo de 2006; Aprobado: 22 de Junio de 2006

Creative Commons License Este es un artículo publicado en acceso abierto bajo una licencia Creative Commons