SciELO - Scientific Electronic Library Online

 
vol.8 número2Uso del efecto de borde de la vegetación para la restauración ecológica del bosque tropicalInvestigación y desarrollo de un fármaco para el tratamiento de la cirrosis índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


TIP. Revista especializada en ciencias químico-biológicas

versão impressa ISSN 1405-888X

TIP vol.8 no.2 Ciudad de México Dez. 2005

 

Artículos de revisión

La respuesta SOS en Escherichia coli

The SOS response of Escherichia coli

Jorge Serment-Guerrero1  * 

Matilde Breña-Valle1 

Javier Espinosa-Aguirre2 

1Lab. de Genética Microbiana, Depto. de Biología, Instituto Nacional de Investigaciones Nucleares. Carretera México-Toluca s/n, La Marquesa, Ocoyoacac, C.P. 52750. Apdo. Postal 18-1027, C.P. 11801, México, D.F.

2Depto. de Medicina Genómica y Toxicologia Ambiental, Instituto de Investigaciones Biomédicas, UNAM. Apdo. Postal 70228, C.P. 04510, México, D.F.


Resumen

Todos los organismos están expuestos a sufrir el ataque de diversos agentes que pueden alterar la estructura química básica de su material genético, como la luz ultravioleta, metabolitos como las aflatoxinas que producen los hongos, o incluso especies reactivas de oxígeno que se generan como producto de la respiración. Para contrarrestar tal efecto a lo largo de la evolución se han desarrollado y seleccionado diferentes estrategias o mecanismos que le permiten sobreponerse a dichas eventualidades. Dentro de éstas se encuentra la respuesta SOS, durante la cual se incrementa la expresión de un grupo de genes cuya función es la de reparar el daño en el DNA y conferir a la célula más oportunidades de sobreponerse y sobrevivir en condiciones de estrés1.

Palabras Clave: lexA; recA; reparación de DNA; respuesta SOS

Abstract

Living organisms are continously exposed to genetic damage caused by a wide diversity of agents, either external, such as radiations and different types of biomolecules, or internal, such as free radicals and reactive oxigen species generated during oxidative metabolism. DNA damage may in turn lead to mutations and cellular or oganismic death. Therefore, to cope with such effects and in order to minimize risks, different strategies have evolved in time. Among those strategies, there is the bacterial SOS response, a group genes related to repair and damage tolerance mechanisms and whose expression rises upon DNA damage. As a result, chances of cell recovery and bacterial survival to stress have considerably increased.

Key words: lexA; recA; DNA repair; SOS response

Texto completo disponible sólo en PDF.

Texto completo disponível apenas em PDF.

Full text available only in PDF format.

Referencias

1. Sutton, M.D., Smith, B.T., Godoy, V.G. & Walker, C.G. The SOS response: Recent insights into umuDC-dependentmutagenesis and DNA damage tolerance. Annu. Rev. Genet. 34:479-497 (2000). [ Links ]

2. Weigle, J.J. Induction of mutation in a bacterial virus. Proc. Natl. Acad. Sci. USA 39:628-636 (1953). [ Links ]

3. Defais, M., Fauquet, P., Radman, M. & Errera, M. Ultraviolet reactivation and ultraviolet mutagenesis of? in different genetic systems. Virology 43:495-503 (1971). [ Links ]

4. Radman, M. Phenomenology of an inducible mutagenic DNA repair pathway in Escherichiacoli : SOS repairhypothesis; in Molecular and Environmental Aspects of Mutagenesis (eds. Sherman, S., Miller, M., Laurence, C. & Tabor, W.H.) 128-142 (Charles C. Thomas Publisher, Springfield, USA, 1976). [ Links ]

5. Gudas, L.J. & Pardee, A.B. Model for regulation of Escherichia coli DNA repair functions. Proc. Natl. Acad. Sci. USA 72:2330-2334 (1975). [ Links ]

6. Roberts, J.W., Roberts, C.W. & Craig, N.L. Escherichia coli recA gene product inactivates phage lambda repressor. Proc. Natl. Acad. Sci. USA , 75:4714-4718 (1975). [ Links ]

7. Little, J.W., Edmiston, S.H., Pacelli, L.Z. & Mount, D.W. Cleavage of Escherichia coli LexA protein by RecA protease. Proc. Natl. Acad. Sci. USA 77:3225-3229 (1980). [ Links ]

8. Little, J.W. & Mount, D.W. The SOS regulatory system of Escherichia coli. Cell 29:11-22 (1982). [ Links ]

9. Brent, R. & Ptashne, M. Mechanism of action of the lexA gene product. Proc. Natl. Acad. Sci. USA 78:4204-4208 (1981). [ Links ]

10. Schnarr, M., Pouyet, J., Granger-Schnarr, M. & Daune, M. Large- scale purification, oligomerization, equilibria, and specific interaction of the LexA repressor of Escherichia coli. Biochemistry 24: 2812-2818 (1985). [ Links ]

11. Thliveris, A.T., Little, J.W. & Mount, D.W. Repression of the Escherichia coli recA gene requires at least two LexA protein monomers. Biochimie 73:449-455 (1991). [ Links ]

12. Lewis, L.K., Harlow, G.R., Gregg-Jolly, L.A. & Mount, D.W. Identification of high affinity binding sites for LexA which define new DNA damage-inducible genes in Escherichia coli. J. Mol. Biol. 241:507-523 (1994). [ Links ]

13. Schnarr, M., Oertel-Buchheit, P., Kazmaier, M. & Granger-Schnarr, M. DNA binding properties of the LexA repressor. Biochimie 73:423-431 (1991). [ Links ]

14. Quillardet, P., Moreau, P.L., Ginsburg, H., Mount, D.W. & Devoret, R. Cell survival, UV reactivation and induction of prophage lambda in Escherichia coli K12 overproducing recA protein. Mol. Gen. Genet. 188:37-43 (1982). [ Links ]

15. Little, J.W., Mount, D.W. & Yanisch-Perron, C.R. Purified LexA protein is a repressor of the recA and lexA genes. Proc. Natl. Acad. Sci. USA 78:4199-4203 (1981). [ Links ]

16. Little, J.W. Autodigestion of LexA and phage ? repressors. Proc. Natl. Acad. Sci. USA 81:1375-1379 (1984). [ Links ]

17. Higashitani, N., Higashitani, A. & Horiuchi, K. SOS induction in Escherichia coli by single-stranded DNA of mutant filamentous phage: monitoring by cleavage of LexA repressor. J. Bacteriol. 177:3610-3612 (1995). [ Links ]

18. Sassanfar, M. & Roberts, J.W. Nature of the SOS-inducing signal in Escherichia coli: the involvement of DNA replication. J. Mol. Biol. 212:79-96 (1990). [ Links ]

19. Breña-Valle, M. & Serment-Guerrero, J. SOS induction by gamma radiation in Escherichia coli strains defective in repair and/or recombination mechanisms. Mutagenesis 13:637-641 (1998). [ Links ]

20. Tavera, L., Breña, M., Pérez, M., Serment, J. & Balcázar, M. Response to alpha and gamma radiations of Escherichia coli strains defective in repair or protective mechanisms. Radiat. Meas. 36:591-595 (2003). [ Links ]

21. Umezu, K. & Kolodner, R. Biochemical interaction of the Escherichia coli RecF, RecO and RecR proteins with RecA protein and single-stranded DNA binding protein. Proc. Natl. Acad. Sci. USA 90:3875-3879 (1993). [ Links ]

22. Whitby, M.C. & Lloyd, R.G. Altered SOS induction associated with mutations in recF, recO and recR. Mol. Gen. Genet. 246:174-179 (1995). [ Links ]

23. Kenyon, C.J. & Walker, G.C. DNA-damaging agents stimulate gene expression at specific loci in Escherichiacoli. Proc. Natl. Acad. Sci. USA 77:2819-2823 (1980). [ Links ]

24. Fernández de Henestrosa, A.R., et al. Identification of additional genes belonging to the LexA regulon in Escherichia coli. Mol. Microbiol. 35:1560-1572 (2000). [ Links ]

25. Courcelle, J., Khodursky, A., Peter, B., Brown, P.O. & Hanawalt, P. Comparative gene expression profiles following UV exposure in wild-type and SOS deficient Escherichia coli. Genetics 158:41-64 (2001). [ Links ]

26. Yeiser, B., Pepper, E.D., Goodman, M.F. & Finkel, S.E. SOS-induced DNA polymerases enhance long-term survival and evolutionary fitness. Proc. Natl. Acad. Sci. USA 99: 8737-8741 (2002). [ Links ]

27. Napolitano, R., Janel-Bintz, R., Wagner, J. & Fuchs, R.P. All three SOS-inducible DNA polymerases (Pol II, Pol IV and Pol V) are involved in induced mutagenesis, EMBO J. 19: 6259-6265 (2000). [ Links ]

28. Ramírez, B.E., Voloshin, O.N., Camerini-Otero, R.D. & Bax, A. Solution structure of DinI provides insight into its mode of RecA inactivation. Protein Sci. 9: 2161-2169 (2000). [ Links ]

29. Voloshin, O.N., Ramírez, B.E., Bax, A. & Camerini-Otero, R.D. A model for the abrogation of the SOS response by an SOS protein: a negatively charged helix in DinI mimics DNA in its interaction with RecA. Genes Dev. 15:415-427 (2001). [ Links ]

30. Stohl, E.A., et al. Escherichia coli RecX inhibits RecA recombinase and coprotease activities in vitro and in vivo. J. Biol. Chem. 278:2278-2285 (2003). [ Links ]

31. Lusetti, S.L., Dress, J.C., Stohl, E.A., Seifert, H.S. & Cox, M.M. The DinI and RecX proteins are competing modulators of RecA function. J. Biol. Chem. 279: 55073-55079 (2004). [ Links ]

32. McGrew, D.A. & Knight, K.L. Molecular design and functional organization of the RecA protein. Crit. Rev. Biochem. Mol. Biol. 38:385-432 (2003). [ Links ]

33. Roca, A.I. & Cox, M.M. RecA protein: Structure, function, and role in recombinational DNA repair. Prog. Nucleic Acids Res. Mol. Biol. 56:129-223 (1997). [ Links ]

34. Lusetti, S.L. & Cox, M.M. The bacterial RecA protein and the recombinational DNA repair of stalled replication forks. Annu. Rev. Biochem. 71: 71-100 (2002). [ Links ]

35. Pugh, B.F. & Cox, M.M. General mechanisms for RecA protein binding in duplex DNA. J. Mol. Biol. 203:479-493 (1988). [ Links ]

36. Tracy, R.B., Chedin, F. & Kowalczykowski, S.C. The recombination hot spot chi is embedded within islands of preferred DNA pairing sequences in the E. coli genome. Cell. 90:205-206 (1997). [ Links ]

37. Egelman, E.H. & Stasiak, A. Structure of helical RecA-DNA complexes. Complexes formed in the presence of ATP-?-S or ATP. J. Mol. Biol. 191:677-697 (1986). [ Links ]

38. Yu, X. & Egelman, E.H. Structural data suggest that the active and inactive forms of the RecA filament are not simply interconvertible. J.Mol. Biol. 227:334-346 (1992). [ Links ]

39. Kuzminov, A. Recombinational repair of DNA damage in Escherichia coli and bacteriophage?. Acad. Microbiol. Mol. Biol. Rev. 63:751-813 (1999). [ Links ]

40. Arnold, D.A. & Kowalksykowski, S.C. Facilitated loading of RecA protein is essential to recombination by RecBCD enzyme. J. Biol. Chem. 275:12261-12265 (2000). [ Links ]

41. Bork, J.M., Cox, M.M. & Inman, R.B. The RecOR proteins modulate RecA protein function at 5' ends of single- stranded DNA. EMBO J. 20:7313-7322 (2001). [ Links ]

42. Alcántara, D., Breña, M. & Serment, J. Divergent adaptation of Escherichia coli to cyclic ultraviolet light exposures. Mutagenesis 19:349-354 (2004). [ Links ]

43. Radman, M. Enzymes of evolutionary change. Nature 401:866-869 (1999). [ Links ]

44. Friedberg, E. & Gerlach, V. Novel DNA polymerases offer clues to the molecular basis of mutagenesis. Cell 98: 413-416 (1999). [ Links ]

45. Walker, G.C. The SOS response of Escherichia coli. In Escherichia coli and Salmonella: Cellular and molecular biology (ed. Neidhardt, F.C., et al. ) 1400-1416 (ASM Press, Washington, DC, 1996). [ Links ]

46. Janion, C. Some aspects of the SOS response system- A critical survey. Acta Biochim. Polon. 48:599-610 (2001). [ Links ]

Recibido: 14 de Octubre de 2005; Aprobado: 28 de Noviembre de 2005

Creative Commons License Este es un artículo publicado en acceso abierto bajo una licencia Creative Commons