SciELO - Scientific Electronic Library Online

 
vol.19 issue3Predicting Software Product Quality: A Systematic Mapping StudyHuman Factor Identification in the Tracking Software Process in Academic Environment author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Computación y Sistemas

Print version ISSN 1405-5546

Comp. y Sist. vol.19 n.3 México Jul./Sep. 2015

 

Artículos

 

All Uses and Statement Coverage: A Controlled Experiment

 

Diego Vallespir1, Silvana Moreno1, Carmen Bogado1, Juliana Herbert2

 

1 Universidad de la República, School of Engineering, Montevideo, Uruguay. dvallesp@fing.edu.uy, smoreno@fing.edu.uy, cmbogado@gmail.com

2 Herbert Consulting, Porto Alegre, Brazil. juliana@herbertconsulting.com

Corresponding author is Diego Vallespir.

 

Article received on 06/06/2014.
Accepted on 05/06/2015.

 

Abstract

This article presents a controlled experiment that compares the behavior of the testing techniques Statement Coverage and All Uses. The design of this experiment is typical for a factor with two alternatives. A total of 14 subjects carry out tests on a single program. The results indicate that there is enough statistical evidence to state that the cost of executing All Uses is higher than that of executing Statement Coverage - a result that we expected to find. However, no statistical differences were found as regards the effectiveness of the techniques.

Keywords: Empirical software engineering, testing techniques, test effectiveness, test cost.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

References

1. Andrews, J. H., Briand, L. C., Labiche, Y., & Namin, A. S. (2006). Using mutation analysis for assessing and comparing testing coverage criteria. IEEE Transactions on Software Engineering, Vol. 32, pp. 608-624.         [ Links ]

2. Basili, V., Caldiera, G., & Rombach, H. (1994). Goal question metric approach. Encyclopedia of Software Engineering, pp. 528-532.         [ Links ]

3. Frankl, P. G. & Weiss, S. N. (1993). An experimental comparison of the effectiveness of branch testing and data flow testing. IEEE Transactions on Software Engineering, Vol. 19, No. 8, pp. 774-787.         [ Links ]

4. Frankl, P. G., Weiss, S. N., & Hu, C. (1997). All-uses vs mutation testing: An experimental comparison of effectiveness. Journal of Systems and Software, Vol. 38, pp. 235-253.         [ Links ]

5. Frankl, P. G. & Weyuker, E. J. (1988). An applicable family of data flow testing criteria. IEEE Transactions on Software Engineering, Vol. 14, No. 10, pp. 1483-1498.         [ Links ]

6. Harrold, M. J. & Rothermel, G. (1994). Performing data flow testing on classes. SIGSOFT Softw. Eng. Notes, Vol. 19, No. 5, pp. 154-163.         [ Links ]

7. Harrold, M. J. & Soffa, M. L. (1989). Interprocedual data flow testing. ACM SIGSOFT '89 third Symposium on Software Testing, Analysis, and Verification (TAV3), ACM, New York, NY, USA, pp. 158-167.         [ Links ]

8. Hutchins, M., Foster, H., Goradia, T., & Ostrand, T. (1994). Experiments on the effectiveness of dataflow- and control-flow-based test adequacy criteria. 16th International Conference on Software Engineering (ICSE-16), pp. 191 -200.         [ Links ]

9. Kakarla, S., Momotaz, S., & Namin, A. (2011). An evaluation of mutation and data-flow testing: A meta-analysis. IEEE Fourth International Conference on Software Testing, Verification and Validation Workshops (ICSTW), pp. 366-375.         [ Links ]

10. Li, N., Praphamontripong, U., & Offutt, J. (2009). An experimental comparison of four unit test criteria: Mutation, edge-pair, all-uses and prime path coverage. International Conference on Software Testing, Verification and Validation Workshops (ICSTW'09), pp. 220 -229.         [ Links ]

11. Mathur, A. P. & Wong, W. E. (1994). An empirical comparison of data flow and mutation-based test adequacy criteria. Software Testing, Verification and Reliability, Vol. 4, pp. 9-31.         [ Links ]

12. Moreno, A., Shull, F., Juristo, N., & Vegas, S. (2009). A look at 25 years of data. IEEE Software, Vol. 26, No. 1, pp. 15-17.         [ Links ]

13. Offutt, A. J., Pan, J., Tewary, K., & Zhang, T. (1996). An experimental evaluation of data flow and mutation testing. Software Practice and Experience, Vol. 26, pp. 165-176.         [ Links ]

14. Rapps, S. & Weyuker, E. J. (1982). Data flow analysis techniques for test data selection. 6th international conference on Software engineering (ICSE'82), IEEE Computer Society Press, Los Alamitos, CA, USA, pp. 272-278.         [ Links ]

15. Vallespir, D., Apa, C., De Le�n, S., Robaina, R., & Herbert, J. (2009). Effectiveness of five verification techniques. XXVIII International Conference of the Chilean Computer Society.         [ Links ]

16. Vallespir, D., Bogado, C., Moreno, S., & Herbert, J. (2010). Comparing verification techniques: All uses and statement coverage. Ibero-American Symposium on Software Engineering and Knowledge Engineering, pp. 85-95.         [ Links ]

17. Vallespir, D. & Herbert, J. (2009). Effectiveness and cost of verification techniques: Preliminary conclusions on five techniques. Mexican International Conference on Computer Science (ENC), pp. 264-271.         [ Links ]

18. Weyuker, E. (1990). The cost of data flow testing: An empirical study. IEEE Transactions on Software Engineering, Vol. 16, pp. 121-128.         [ Links ]

19. Weyuker, E. J. (1984). The complexity of data flow criteria for test data selection. Information Processing Letters, Vol. 19, No. 2, pp. 103-109.         [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License