SciELO - Scientific Electronic Library Online

 
vol.19 issue3Facial Geometry Identification through Fuzzy Patterns with RGBD SensorAll Uses and Statement Coverage: A Controlled Experiment author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Computación y Sistemas

Print version ISSN 1405-5546

Comp. y Sist. vol.19 n.3 México Jul./Sep. 2015

 

Artículos

 

Predicting Software Product Quality: A Systematic Mapping Study

 

Sofia Ouhbi1, Ali Idri1, José Luis Fernández-Alemán2, Ambrosio Toval2

 

1 University Mohammed V, Software Project Management Research Team, ENSIAS, Rabat, Morocco. ouhbisofia@gmail.com, idri@ensias.ma

2 University of Murcia, Department of Informatics and Systems, Faculty of Computer Science, Murcia, Spain. aleman@um.es, atoval@um.es

Corresponding author is Sofia Ouhbi.

 

Article received on 14/04/2014.
Accepted on 10/06/2015.

 

Abstract

Predicting software product quality (SPQ) is becoming a permanent concern during software life cycle phases. In this paper, a systematic mapping study was performed to summarize the existing SPQ prediction (SPQP) approaches in literature and to organize the selected studies according to seven classification criteria: SPQP approaches, research types, empirical types, data sets used in the empirical evaluation of these studies, artifacts, SQ models, and SQ characteristics. Publication channels and trends were also identified. After identifying 182 documents in ACM Digital Library, IEEE Xplore, ScienceDirect, SpringerLink, and Google scholar, 69 papers were selected. The results show that the main publication source of the papers identified was conference. Data mining techniques are the most frequently SPQP approaches reported in literature. Solution proposal was the main research type identified. The majority of the papers selected were history-based evaluations using existing data which were mainly obtained from open source software projects and domain specific projects. Source code was the main artifact concerned with SPQP approaches. Well-known SQ models were hardly mentioned and reliability is the SQ characteristic through which SPQP was mainly achieved. SPQP-related subject seems to need more investigation from researchers and practitioners. Moreover, SQ models and standards need to be considered more in future SPQP research.

Keywords: Prediction, software product quality, systematic mapping study.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Acknowledgments

This research is part of the project Software Project Management using Data Mining Techniques, (AP2010-2013), financed by Mohammed V University (Morocco), and part of the project GEODAS-REQ (TIN2012-37493-C03-02) financed by both the Spanish Ministry of Economy and Competitiveness and European FEDER funds. The mobility grant of Sofia Ouhbiis financed by the Mediterranean Office for Youth (MOY).

 

References

1. (1999). ISO/IEC Standard. ISO-9126 Software Product Evaluation - Quality Characteristics and Guidelines for Their Use.         [ Links ]

2. (2007). Guide to the Software Quality Body of Knowledge (SQuBOK). Technical report, JUSE: The Union of Japanese Scientists and Engineers.         [ Links ]

3. (2009). Standish-Group, CHAOS summary.         [ Links ]

4. (2011). ISO/IEC 25010 standard. Systems and software engineering - Systems and software Quality Requirements and Evaluation (SQuaRE) -System and software quality models.         [ Links ]

5. (2013). NASA Metrics Data Program (MDP) Repository.         [ Links ]

6. Abran, A. & Moore, J. W. (2004). Guide to the software engineering body of knowledge (SWE-BOK). IEEE Computer Society.         [ Links ]

7. Aggarwal, K., Singh, Y., Kaur, A., & Malhotra, R. (2006). Improving logistic regression predictions of software quality using principal component analysis. MENSURA, pp. 226.         [ Links ]

8. Al-Jamimi, H. A. & Ahmed, M. (2013). Machine learning-based software quality prediction models: state of the art. International Conference on Information Science and Applications (ICISA), IEEE, pp. 1-4.         [ Links ]

9. Ampatzoglou, A., Charalampidou, S., & Stamelos, I. (2013). Research state of the art on GoF design patterns: A mapping study. Journal of Systems and Software.

10. Azar, D., Harmanani, H., & Korkmaz, R. (2009). A hybrid heuristic approach to optimize rule-based software quality estimation models. Information and Software Technology, Vol. 51, No. 9, pp. 1365-1376.         [ Links ]

11. Azar, D. & Vybihal, J. (2011). An ant colony optimization algorithm to improve software quality prediction models: Case of class stability. Information and Software Technology, Vol. 53, No. 4, pp. 388-393.         [ Links ]

12. Baisch, E. & Liedtke, T. (1997). Comparison of conventional approaches and soft-computing approaches for software quality prediction. IEEE International Conference on Systems, Man, and Cybernetics, pp. 1045-1049.         [ Links ]

13. Banthia, D. & Gupta, A. (2012). Investigating fault prediction capabilities of five prediction models for software quality. Proceedings of the 27th Annual ACM Symposium on Applied Computing, SAC '12, ACM, New York, NY, USA, pp. 1259-1261.         [ Links ]

14. Bhatia, N. & Kapoor, N. (2011). Fuzzy cognitive map based approach for software quality risk analysis. SIGSOFT Software Engineering Notes, Vol. 36, No. 6, pp. 1-9.         [ Links ]

15. Boehm, B. W., Brown, J. R., Kaspar, H., & Lipow, M. (1978). Characteristics of software quality. TRW Softw. Technol. North-Holland, Amsterdam.         [ Links ]

16. Bouguila, N., Wang, J. H., & Ben Hamza, A. (2008). A bayesian approach for software quality prediction. 4th International IEEE Conference Intelligent Systems, volume 2, pp. 49-54.         [ Links ]

17. Bouktif, S., Ahmed, F., Khalil, I., & Antoniol, G. (2010). A novel composite model approach to improve software quality prediction. Information and Software Technology, Vol. 52, No. 12, pp. 1298-1311.         [ Links ]

18. Bouktif, S., Kegl, B., & Sahraoui, H. (2002). Combining software quality predictive models: An evolutionary approach. International Conference on Software Maintenance, pp. 385-392.         [ Links ]

19. Bouktif, S., Sahraoui, H., & Antoniol, G. (2006). Simulated annealing for improving software quality prediction. Proceedings of the 8th annual conference on Genetic and evolutionary computation, GECCO '06, ACM, New York, NY, USA, pp. 1893-1900.         [ Links ]

20. Brereton, P., Kitchenham, B. A., Budgen, D., Turner, M., & Khalil, M. (2007). Lessons from applying the systematic literature review process within the software engineering domain. Journal of Systems and Software, Vol. 80, No. 4, pp. 571-583.         [ Links ]

21. do Prado, H. A., Bianchi Campos, F., Ferneda, E., Nunes Cornelio, N., & Haendchen Filho, A. (2013). Prediction of software quality based on variables from the development process. Proceedings of the 16th International Conference on Knowledge Engineering, Machine Learning and Lattice Computing with Applications, KES'12, Springer-Verlag, Berlin, Heidelberg, pp. 71-77.         [ Links ]

22. Dromey, R. G. (1996). Cornering the Chimera. IEEE Software, Vol. 13, No. 1, pp. 33-43.         [ Links ]

23. Easterbrook, S., Singer, J., Storey, M.-A., & Damian, D. (2008). Selecting empirical methods for software engineering research. In Guide to advanced empirical software engineering. Springer, pp. 285-311.         [ Links ]

24. Ekanayake, J., Tappolet, J., Gall, H. C., & Bernstein, A. (2009). Tracking concept drift of software projects using defect prediction quality. Proceedings of the 2009 6th IEEE International Working Conference on Mining Software Repositories, MSR '09, IEEE Computer Society, Washington, DC, USA, pp. 51-60.         [ Links ]

25. Elberzhager, F., Münch, J., & Nha, V. T. N. (2012). A systematic mapping study on the combination of static and dynamic quality assurance techniques. Information and Software Technology, Vol. 54, No. 1, pp. 1-15.         [ Links ]

26. Fenton, N. E. & Neil, M. (1999). A critique of software defect prediction models. IEEE Transactions Software Engineering, Vol. 25, No. 5, pp. 675-689.         [ Links ]

27. Ganesan, K., M, K. T., & B, A. E. (2000). Case-based software quality prediction. International Journal of Software Engineering and Knowledge Engineering, Vol. 10, pp. 139-152.         [ Links ]

28. Gao, K., Khoshgoftaar, T. M., & Wang, H. (2009). An empirical investigation of filter attribute selection techniques for software quality classification. Proceedings of the 10th IEEE international conference on Information Reuse & Integration, IRI'09, IEEE Press, Piscataway, NJ, USA, pp. 272-277.         [ Links ]

29. Garousi, V., Mesbah, A., Betin-Can, A., & Mirshokraie, S. (2013). A systematic mapping study of web application testing. Information and Software Technology, Vol. 55, No. 8, pp. 1374-1396.         [ Links ]

30. Gayatri, N., Nickolas, S., Reddy, A. V., & Chitra, R. (2009). Performance analysis of datamining algorithms for software quality prediction. Proceedings of the 2009 International Conference on Advances in Recent Technologies in Communication and Computing, ARTCOM '09, IEEE Computer Society, Washington, DC, USA, pp. 393-395.         [ Links ]

31. Gokhale, S. S. & Lyu, M. R. (1997). Regression tree modeling for the prediction of software quality. International Conference on Reliability and Quality in Design, pp. 31-36.         [ Links ]

32. González-Barahona, J. M. & Robles, G. (2012). On the reproducibility of empirical software engineering studies based on data retrieved from development repositories. Empirical Software Engineering, Vol. 17, No. 1-2, pp. 75-89.         [ Links ]

33. Guo, P. & Lyu, M. R. (2000). Software quality prediction using mixture models with EM algorithms. Proceedings of the The First Asia-Pacific Conference on Quality Software (APAQS'00), APAQS '00, IEEE Computer Society, Washington, DC, USA, pp. 69-78.         [ Links ]

34. Gupta, D., Goyal, V. K., & Mittal, H. (2012). Analysis of clustering techniques for software quality prediction. International Conference on Advanced Computing and Communication Technologies, IEEE Computer Society, Los Alamitos, CA, USA, pp. 6-9.         [ Links ]

35. Hmood, A. & Rilling, J. (2013). Analyzing and predicting software quality trends using financial patterns. 2013 IEEE 37th Annual Computer Software and Applications Conference Workshops (COMPSACW), IEEE, pp. 481-486.         [ Links ]

36. Hribar, L. & Duka, D. (2010). Software component quality prediction using KNN and Fuzzy logic. Proceedings 33rd International Convention on Information and Communication Technology, Electronics and Microelectronics, volume 2, pp. 153-159.         [ Links ]

37. ISBSG (2013). International Software Benchmarking Standards Group.         [ Links ]

38. Jiang, Y., Cuki, B., Menzies, T., & Bartlow, N. (2008) . Comparing design and code metrics for software quality prediction. Proceedings of the 4th international workshop on Predictor models in software engineering, PROMISE '08, ACM, New York, NY, USA, pp. 11-18.         [ Links ]

39. Jin, C., Jin, S.-W., Ye, J.-M., & Zhang, Q.-G. (2009) . Quality prediction model of object-oriented software system using computational intelligence. International Conference on Power Electronics and Intelligent Transportation System, pp. 120-123.         [ Links ]

40. Jorgensen, M. & Shepperd, M. (2007). A systematic review of software development cost estimation studies. IEEE Transactions Software Engineering, Vol. 33, No. 1, pp. 33-53.         [ Links ]

41. Kanmani, S., Uthariaraj, V. R., Sankaranarayanan, V., & Thambidurai, P. (2004). Object oriented software quality prediction using general regression neural networks. SIGSOFT Software Engineering Notes, Vol. 29, No. 5, pp. 1-6.         [ Links ]

42. Karg, L. M., Grottke, M., & Beckhaus, A. (2011). A systematic literature review of software quality cost research. Journal of Systems and Software, Vol. 84, No. 3, pp. 415-427.         [ Links ]

43. Kaur, A., Sandhu, P. S., & Bra, A. S. (2009). Early software fault prediction using real time defect data. Proceedings of the 2009 Second International Conference on Machine Vision, ICMV '09, IEEE Computer Society, Washington, DC, USA, pp. 242-245.         [ Links ]

44. Kaur, D., Kaur, A., Gulati, S., & Aggarwal, M. (2010) . A clustering algorithm for software fault prediction. International Conference on Computer and Communication Technology, pp. 603-607.         [ Links ]

45. Keivanloo, I., Forbes, C., Hmood, A., Erfani, M., Neal, C., Peristerakis, G., & Rilling, J. (2012). A linked data platform for mining software repositories. 9th IEEE Working Conference on Mining Software Repositories (MSR), IEEE, pp. 32-35.         [ Links ]

46. Keivanloo, I., Forbes, C., Rilling, J., & Charland, P. (2011 ). Towards sharing source code facts using linked data. Proceedings of the 3rd International Workshop on Search-Driven Development: Users, Infrastructure, Tools, and Evaluation, SUITE '11, ACM, New York, NY, USA, pp. 25-28.         [ Links ]

47. Khoshgoftaar, T. & Gao, K. (2007). Count models for software quality estimation. IEEE Transactions on Reliability, Vol. 56, pp. 212-222.         [ Links ]

48. Khoshgoftaar, T. & Liu, Y. (2007). A multi-objective software quality classification model using genetic programming. IEEE Transactions on Reliability, Vol. 56, No. 2, pp. 237-245.         [ Links ]

49. Khoshgoftaar, T. M., Allen, E. B., Halstead, R., Trio, G. P., & Flass, R. M. (1998). Using process history to predict software quality. Computer, Vol. 31, No. 4, pp. 66-72.         [ Links ]

50. Khoshgoftaar, T. M., Allen, E. B., Jones, W. D., & Hudepohl, J. P. (1999). Data mining for predictors of software quality. International Journal of Software Engineering and Knowledge Engineering, Vol. 09, No. 05, pp. 547-563.         [ Links ]

51. Khoshgoftaar, T. M., Liu, Y., & Seliya, N. (2004). A multiobjective module-order model for software quality enhancement. IEEE Transactions on Evolutionary Computation, Vol. 8, No. 6, pp. 593-608.         [ Links ]

52. Khoshgoftaar, T. M. & Seliya, N. (2002). Tree-based software quality estimation models for fault prediction. Proceedings of the 8th International Symposium on Software Metrics, METRICS '02, IEEE Computer Society, Washington, DC, USA, pp. 203-214.         [ Links ]

53. Khoshgoftaar, T. M. & Seliya, N. (2003). Fault prediction modeling for software quality estimation: Comparing commonly used techniques. Empirical Software Engineering, Vol. 8, No. 3, pp. 255-283.         [ Links ]

54. Khoshgoftaar, T. M. & Seliya, N. (2004). Software quality estimation with case-based reasoning. volume 62 of Advances in Computers. Elsevier, pp. 249-291.

55. Kitchenham, B. & Brereton, P. (2013). A systematic review of systematic review process research in software engineering. Information and Software Technology, Vol. 55, No. 12, pp. 2049-2075.         [ Links ]

56. Kitchenham, B. & Pfleeger, S. L. (1996). Software quality: The elusive target. IEEE Software, Vol. 13, No. 1, pp. 12-21.         [ Links ]

57. Landis, J. & Koch, G. (1977). The measurement of observer agreement for categorical data. Biometrics, Vol. 33, pp. 159-174.         [ Links ]

58. Lewis Nigel, D. C. (1999). Assessing the evidence from the use of spc in monitoring, predicting & improving software quality. Comput. Ind. Eng., Vol. 37, No. 1-2, pp. 157-160.         [ Links ]

59. Liu, Y., Khoshgoftaar, T. M., & Seliya, N. (2010). Evolutionary optimization of software quality modeling with multiple repositories. IEEE Transactions Software Engineering, Vol. 36, No. 6, pp. 852-864.         [ Links ]

60. Loh, C. H. & Lee, S. P. (2009). Predicting quality of object-oriented systems through a quality model based on design metrics and data mining techniques. Proceedings of the 2009 International Conference on Information Management and Engineering, ICIME '09, IEEE Computer Society, Washington, DC, USA, pp. 239-243.         [ Links ]

61. Lounis, H., Abdi, M., & Yazid, H. (2006). Predicting quality attributes via machine-learning algorithms. MENSURA, pp. 72.         [ Links ]

62. Lyu, M. R. (2007). Software reliability engineering: A roadmap. 2007 Future of Software Engineering, FOSE '07, IEEE Computer Society, Washington, DC, USA, pp. 153-170.         [ Links ]

63. Margaret, H. D. (2003). Data mining introductory and advanced topics. Pearsons Education Inc.         [ Links ]

64. McCall, J. A. (2002). Quality Factors. John Wiley & Sons, Inc.         [ Links ]

65. Menzies, T., Caglayan, B., Kocaguneli, E., Krall, J., Peters, F., & Turhan, B. (2012). The PROMISE Repository of empirical software engineering data.         [ Links ]

66. Mertik, M., Lenic, M., Stiglic, G., & Kokol, P. (2006). Estimating software quality with advanced data mining techniques. Proceedings of the International Conference on Software Engineering Advances, ICSEA '06, IEEE Computer Society, Washington, DC, USA, pp. 19.         [ Links ]

67. Mockus, A., Zhang, P., & Li, P. L. (2005). Predictors of customer perceived software quality. Proceedings of the 27th international conference on Software engineering, ICSE '05, ACM, New York, NY, USA, pp. 225-233.         [ Links ]

68. Montagud, S., Abrahão, S., & Insfran, E. (2012). A systematic review of quality attributes and measures for software product lines. Software Quality Journal, Vol. 20, No. 3-4, pp. 425-486.         [ Links ]

69. Moreno García, M. N., Román, I. R., García Peñalvo, F. J., & Bonilla, M. T. (2008). An association rule mining method for estimating the impact of project management policies on software quality, development time and effort. Expert Syst. Appl. Vol. 34, No. 1, pp. 522-529.         [ Links ]

70. Ortega, M., Pérez, M., & Rojas, T. (2003). Construction of a systemic quality model for evaluating a software product. Software Quality Control, Vol. 11, No. 3, pp. 219-242.         [ Links ]

71. Ouhbi, S., Idri, A., Fernández-Alemán, J. L., & Toval, A. (2013). Software quality requirements: a systematic mapping study. 2013 20th Asia-Pacific Software Engineering Conference (APSEC), volume 1, IEEE, pp. 231-238.         [ Links ]

72. Ouhbi, S., Idri, A., Fernández-Alemán, J. L., & Toval, A. (2014). Evaluating software product quality: A systematic mapping study. 2014 Joint Conference of the International Workshop on Software Measurement and the International Conference on Software Process and Product Measurement (IWSM-MENSURA), IEEE, pp. 141-151.         [ Links ]

73. Ouhbi, S., Idri, A., Fernández-Alemán, J. L., & Toval, A. (2015). Requirements engineering education: a systematic mapping study. Requirements Engineering, Vol. 20, No. 2, pp. 119-138.         [ Links ]

74. Peng, W., Yao, L., & Miao, Q. (2009). An approach of software quality prediction based on relationship analysis and prediction model. International Conference on Reliability, Maintainability and Safety, pp. 713-717.         [ Links ]

75. Petersen, K., Feldt, R., Mujtaba, S., & Mattsson, M. (2008). Systematic mapping studies in software engineering. 12th International Conference on Evaluation and Assessment in Software Engineering, Blekinge Institute of Technology, Bari, Italy, pp. 71-80.         [ Links ]

76. Pizzi, N. J. (2013). A fuzzy classifier approach to estimating software quality. Information Sciences.

77. Pizzi, N. J., Summers, A. R., & Pedrycz, W. (2002). Software quality prediction using median-adjusted class labels. Proceedings of the International Joint Conference on Neural Networks, volume 3, pp. 2405-2409.         [ Links ]

78. Portillo-Rodríguez, J., Vizcaíno, A., Piattini, M., & Beecham, S. (2012). Tools used in global software engineering: A systematic mapping review. Information and Software Technology, Vol. 54, No. 7, pp. 663-685.         [ Links ]

79. Pressman, R. (2009). Software engineering: A practitioner's approach.         [ Links ]

80. Radjenović, D., Herićko, M., Torkar, R., & Živković, A. (2013). Software fault prediction metrics: A systematic literature review. Information and Software Technology, Vol. 55, No. 8, pp. 1397-1418.         [ Links ]

81. Radlinski, L. (2013). An expert-driven bayesian network model for simulating and predicting software quality. eKNOW 2013, The Fifth International Conference on Information, Process, and Knowledge Management, pp. 26-31.         [ Links ]

82. Rana, S. & Yadav, R. K. (2013). A fuzzy improved association mining approach to estimate software quality. International Journal of Computer Science and Mobile Computing.

83. Rana, Z. A., Shamail, S., & Awais, M. M. (2008). Towards a generic model for software quality prediction. Proceedings of the 6th international workshop on Software quality, WoSQ '08, ACM, New York, NY, USA, pp. 35-40.         [ Links ]

84. Rastkar, S., Murphy, G. C., & Murray, G. (2010). Summarizing software artifacts: a case study of bug reports. Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering, volume 1 of ICSE '10, ACM, New York, NY, USA, pp. 505-514.         [ Links ]

85. Sahraoui, H. A., Boukadoum, M. A., Chawiche, H. M., Mai, G., & Serhani, M. (2002). A fuzzy logic framework to improve the performance and interpretation of rule-based quality prediction models for oo software. Proceedings of the 26th International Computer Software and Applications Conference on Prolonging Software Life: Development and Redevelopment, COMPSAC '02, IEEE Computer Society, Washington, DC, USA, pp. 131-138.         [ Links ]

86. Schneidewind, N. F. & Nikora, A. P. (1999). Predicting deviations in software quality by using relative critical value deviation metrics. Proceedings of the 10th International Symposium on Software ReliabilityEngineering, ISSRE '99, IEEE Computer Society, Washington, DC, USA, pp. 136-146.         [ Links ]

87. Seiffert, C., Khoshgoftaar, T. M., & Van Hulse, J. (2009). Improving software-quality predictions with data sampling and boosting. Trans. Sys. Man Cyber. Part A, Vol. 39, No. 6, pp. 1283-1294.         [ Links ]

88. Seliya, N. & Khoshgoftaar, T. M. (2007). Software quality analysis of unlabeled program modules with semisupervised clustering. Trans. Sys. Man Cyber. Part A, Vol. 37, No. 2, pp. 201-211.         [ Links ]

89. Seliya, N. & Khoshgoftaar, T. M. (2007). Software quality estimation with limited fault data: a semi-supervised learning perspective. Software Quality Control, Vol. 15, No. 3, pp. 327-344.         [ Links ]

90. Seliya, N., Khoshgoftaar, T. M., & Zhong, S. (2004). Semi-supervised learning for software quality estimation. Proceedings of the 16th IEEE International Conference on Tools with Artificial Intelligence, ICTAI '04, IEEE Computer Society, Washington, DC, USA, pp. 183-190.         [ Links ]

91. Shafi, S., Hassan, S. M., Arshaq, A., Khan, M. J., & Shamail, S. (2008). Software quality prediction techniques: A comparative analysis. 4th International Conference on Emerging Technologies, pp. 242-246.         [ Links ]

92. Sinovcic, I. & Hribar, L. (2010). How to improve software development process using mathematical models for quality prediction and elements of six sigma methodology. MIPRO, pp. 388-395.         [ Links ]

93. SOLEY, B., Richard Market CURTIS (2013). The Consortium for IT Software Quality (CISQ). Software Quality. Increasing Value in Software and Systems Development, pp. 3-9.         [ Links ]

94. Tahir, A. & MacDonell, S. G. (2012). A systematic mapping study on dynamic metrics and software quality. 28th IEEE International Conference on Software Maintenance (ICSM), IEEE, pp. 326-335.         [ Links ]

95. Tan, X., Peng, X., Pan, S., & Zhao, W. (2011). Assessing software quality by program clustering and defect prediction. Proceedings of the 2011 18th Working Conference on Reverse Engineering, WCRE '11, IEEE Computer Society, Washington, DC, USA, pp. 244-248.         [ Links ]

96. Thwin, M. M. T. & Quah, T.-S. (2005). Application of neural networks for software quality prediction using object-oriented metrics. Journal of Systems and Software, Vol. 76, No. 2, pp. 147-156.         [ Links ]

97. Vanderose, B. & Habra, N. (2011). Tool-support for a model-centric quality assessment: QuaTA-LOG. Joint Conference of the International Workshop on Software Measurement and the International Conference on Software Process and Product Measurement, IEEE Computer Society, Los Alamitos, CA, USA, pp. 263-268.         [ Links ]

98. Verma, G. & Tomar, P. (2013). Predicting quality using fuzzy model on object-oriented software design. IUP Journal of Computer Sciences, Vol. 7, No. 4.         [ Links ]

99. Voas, J. (2000). Can chaotic methods improve software quality predictions? IEEE Software, Vol. 17, No. 5, pp. 20-22.         [ Links ]

100. Wang, Q., Yu, B., & Zhu, J. (2004). Extract rules from software quality prediction model based on neural network. Proceedings of the 16th IEEE International Conference on Tools with Artificial Intelligence, ICTAI '04, IEEE Computer Society, Washington, DC, USA, pp. 191-195.         [ Links ]

101. Wang, Q., Zhu, J., & Yu, B. (2007). Feature selection and clustering in software quality prediction. Proceedings of the 11th international conference on Evaluation and Assessment in Software Engineering, EASE'07, British Computer Society, Swinton, UK, UK, pp. 21-32.         [ Links ]

102. Wang, X., Zhang, Y., Zhang, L., & Shi, Y. (2010). A knowledge discovery case study of software quality prediction: Isbsg database. Proceedings of the 2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, volume 3 of WI-IAT '10, IEEE Computer Society, Washington, DC, USA, pp. 219-222.         [ Links ]

103. Wen, J., Li, S., Lin, Z., Hu, Y., & Huang, C. (2012). Systematic literature review of machine learning based software development effort estimation models. Information and Software Technology, Vol. 54, No. 1, pp. 41-59.         [ Links ]

104. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B., & Wesslén, A. (2000). Experimentation in software engineering: an introduction. Kluwer Academic Publishers, Norwell, MA, USA.         [ Links ]

105. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B., & Wesslén, A. (2012). Experimentation in software engineering. Springer.         [ Links ]

106. Xie, T., Thummalapenta, S., Lo, D., & Liu, C. (2009). Data mining for software engineering. Computer, Vol. 42, No. 8, pp. 55-62.         [ Links ]

107. Xing, F., Guo, P., & Lyu, M. R. (2005). A novel method for early software quality prediction based on support vector machine. Proceedings of the 16th IEEE International Symposium on Software ReliabilityEngineering, ISSRE '05, IEEE Computer Society, Washington, DC, USA, pp. 213-222.         [ Links ]

108. Xu, Z. & Khoshgoftaar, T. M. (2001). Software quality prediction for high-assurance network telecommunications systems. The Computer Journal, Vol. 44, No. 6, pp. 557-568.         [ Links ]

109. Yang, B., Yao, L., & Huang, H.-Z. (2007). Early software quality prediction based on a fuzzy neural network model. Proceedings of the Third International Conference on Natural Computation, volume 1 of ICNC 07, IEEE Computer Society, Washington, DC, USA, pp. 760-764.         [ Links ]

110. Yang, B., Yin, Q., Xu, S., & Guo, P. (2008). Software quality prediction using affinity propagation algorithm. IEEE International Joint Conference on Neural Networks, pp. 1891-1896.         [ Links ]

111. Yang, W. & Li, L. (2008). A new method to predict software defect based on rough sets. Proceedings of the 2008 First International Conference on Intelligent Networks and Intelligent Systems, ICI-NIS '08, IEEE Computer Society, Washington, DC, USA, pp. 135-138.         [ Links ]

112. Yuan, X., Khoshgoftaar, T. M., Allen, E. B., & Ganesan, K. (2000). An application of fuzzy clustering to software quality prediction. Proceedings of the 3rd IEEE Symposium on Application-Specific Systems and Software Engineering Technology (ASSET 00), ASSET '00, IEEE Computer Society, Washington, DC, USA, pp. 85-90.         [ Links ]

113. Zheng, J. (2010). Cost-sensitive boosting neural networks for software defect prediction. Expert Syst. Appl., Vol. 37, No. 6, pp. 4537-4543.         [ Links ]

114. Zhong, S., Khoshgoftaar, T. M., & Seliya, N. (2004). Unsupervised learning for expert-based software quality estimation. Proceedings of the Eighth IEEE international conference on High assurance systems engineering, HASE'04, IEEE Computer Society, Washington, DC, USA, pp. 149-155.         [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License