SciELO - Scientific Electronic Library Online

vol.19 issue3Design and Implementation of an Intelligent System for Controlling a Robotic Hospital Bed for Patient Care AssistanceIntelligent Waste Separator author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand




Related links

  • Have no similar articlesSimilars in SciELO


Computación y Sistemas

Print version ISSN 1405-5546

Comp. y Sist. vol.19 n.3 México Jul./Sep. 2015




Modeling and Pose Control of Robotic Manipulators and Legs using Conformal Geometric Algebra


Oscar Carbajal-Espinosa1, Luis González-Jiménez2, Jose Oviedo-Barriga3, Bernardino Castillo-Toledo4, Alexander Loukianov 4, Eduardo Bayro-Corrochano4


1 Instituto Tecnológico y de Estudios Superiores de Monterrey, Guadalajara, México.

2 Instituto Tecnológico y de Estudios Superiores de Occidente, Guadalajara, México.

3 Universidad Veracruzana, Ciudad Mendoza, México.

4 Centro de Investigación y De Estudios Avanzados del I.P.N., Guadalajara, México.,,

Corresponding author is Oscar Carbajal-Espinosa.


Article received on 03/12/2014.
Accepted on 16/04/2015.



Controlling the pose of a manipulator involves finding the correct configuration of the robot's elements to move the end effector to a desired position and orientation. In order to find the geometric relationships between the elements of a robot manipulator, it is necessary to define the kinematics of the robot. We present a synthesis of the kinematical model of the pose for this type of robot using the conformal geometric algebra framework. In addition, two controllers are developed, one for the position tracking problem and another for the orientation tracking problem, both using an error feedback controller. The stability analysis is carried out for both controllers, and their application to a 6-DOF serial manipulator and the legs of a biped robot are presented. By proposing the error feedback and Lyapunov functions in terms of geometric algebra, we are opening a new venue of research in control of manipulators and robot legs that involves the use of geometric primitives, such as lines, circles, planes, spheres.

Keywords: Serial manipulators, pose control, motors, conformal geometric algebra.





This work was supported in part by Project SEP-CONACYT "Métodos Geométricos y Cognitivos para la percepción, aprendizaje, control y acción de humanoides" under Grant 82084 and PhD scholarships No. 219316 and No. 28824.



1. Bayro-Corrochano, E. (2010). Geometric Computing: for Wavelet Transforms, Robot Vision, Learning, Control and Action. Springer Verlag, London.         [ Links ]

2. Khalil, H. (1996). Nonlinear Systems. Prentice-Hall.         [ Links ]

3. Li, H., Hestenes, D., & Rockwood, A. (2001). Generalized homogeneous coordinates for computational geometry. Geometric Computing with Clifford Algebras, Springer-Verlag Heidelberg, pp. 27-52.         [ Links ]

4. MathWorks (2008). Matlab, Release Notes.         [ Links ]

5. Nakamura, Y. & Hanafusa, H. (1986). Inverse kinematics solution with singularity robustness for robot manipulator control. ASME Journal of Dynamic Systems, Measurement and Control, Vol. 108, pp. 163-171.         [ Links ]

6. Perwass, C. (2010). CLUCalc, Interactive Visualization.         [ Links ]

7. Perwass, C. & Hildenbrand, D. (2004). Aspects of Geometric Algebra in Euclidean, Projective and Conformal Space.         [ Links ]

8. Zamora-Esquivel, J. & Bayro-Corrochano, E. (2006). Kinematics and diferential kinematics of binocular robot head. IEEE International Conference on Robotics and Automation, pp. 4130-4135.         [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License