SciELO - Scientific Electronic Library Online

vol.19 issue3Neural Control for a Differential Drive Wheeled Mobile Robot Integrating Stereo Vision FeedbackAutonomous Motion Planning for Avatar Limbs author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand




Related links

  • Have no similar articlesSimilars in SciELO


Computación y Sistemas

Print version ISSN 1405-5546

Comp. y Sist. vol.19 n.3 México Jul./Sep. 2015




Integration of an Inverse Optimal Neural Controller with Reinforced-SLAM for Path Panning and Mapping in Dynamic Environments


Alma Y. Alanis, Nancy Arana-Daniel, Carlos López-Franco, Edgar Guevara-Reyes


Universidad de Guadalajara, CUCEI, Zapopan, Jalisco, México.,,,

Corresponding author is Alma Y. Alanis.


Article received on 03/12/2014.
Accepted 24/04/2015.



This work presents an artificial intelligence approach to solve the problem of finding a path and creating a map in unknown environments using Reinforcement Learning (RL) and Simultaneous Localization and Mapping (SLAM) for a differential mobile robot along with an optimal control system. We propose the integration of these approaches (two of the most widely used ones) for the implementation of robot navigation systems with an efficient method of control composed by a neural identifier and an inverse optimal control in order to obtain a robust and autonomous system of navigation in unknown and dynamic environments.

Keywords: Optimal neural control, reinforced-SLAM, path panning, mapping, dynamic environments.





The authors are thankful for the support by CONACYT Mexico through Projects 103191Y, 106838Y, 156567Y, and INFR-229696.



1. Durrant-Whyte, H. & Bailey, T. (2006). Simultaneous localization and mapping: part I. IEEE Robotics & Automation Magazine, Vol. 13, No. 2, pp. 99-110, doi: 10.1007/978-3-540-30301-5_38.         [ Links ]

2. Durrant-Whyte, H. & Bailey, T. (2006). Simultaneous localization and mapping (slam), part II: State of the art. IEEE Robotics & Automation Magazine, Vol. 13, No. 2, pp. 108-117.         [ Links ]

3. Do, K., Jiang, Z.P., & Pan, J. (2004). Simultaneous tracking and stabilization of mobile robots: an adaptive approach. IEEE Transactions on Automatic Control, Vol. 49, No. 7, pp. 1147-1151.         [ Links ]

4. Fu, K.S., González, R.C., & Lee, C.S.G (1987). Robotics: control, sensing, vision, and intelligence. New York: McGraw-Hill.         [ Links ]

5. Salome, A., Alanis, A.Y., & Sánchez, E.N. (2011). Discrete-time sliding mode controllers for nonholonomic mobile robots trajectory tracking problem. Proc. of the 8th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE 2011), pp. 1-6, doi: 10.1109/ICEEE.2011.6106564.         [ Links ]

6. Fierro, R. & Lewis, F.L. (1998). Control of a nonholonomic mobile robot using neural networks. IEEE Transactions on Neural Networks, Vol. 9, No. 4, pp. 589-600, doi: 10.1109/72.701173.         [ Links ]

7. Jiang, Z.-P. & Nijmeijer, H. (1999). A recursive technique for tracking control of nonholonomic systems in chained form. IEEE Transactions on Automatic Control, Vol. 44, No. 2, pp. 265-279, doi: 10.1109/9.746253.         [ Links ]

8. Kumbla, K.K. & Jamshidi, M. (1997). Neural network based identification of robot dynamics used for neuro-fuzzy controller. IEEE International Conference on Robotics and Automation (ICRA 1997), Vol. 2, No. 1, pp. 1118-1123, doi: 10.1109/ROBOT.1997.614286.         [ Links ]

9. Raghavan, V. & Jamshidi, M. (2007). Sensor fusion based autonomous mobile robot navigation. IEEE International Conference on System of Systems Engineering (SOSE 2007), doi: 10.1109/SYSOSE.2007.4304295.         [ Links ]

10. Yang, J.-M. & Kim, J.-H. (1999). Sliding mode control for trajectory tracking of nonholonomic wheeledmobile robots. IEEE Transactions on Robotics and Automation, Vol. 5, No. 3, pp. 578-587, doi: 10.1109/70.768190.         [ Links ]

11. Holland, J. (2003). Designing Autonomous Mobile Robots: Inside the Mind of an Intelligent Machine. Newnes, Melbourne, Australia.         [ Links ]

12. Das, T. & Kar, I. (2006). Design and implementation of an adaptive fuzzy logic-based controller for wheeled mobile robots. IEEE Transactions on Control Systems Technology, Vol. 14, No. 3, pp. 501-510, doi: 10.1109/TCST.2006.872536.         [ Links ]

13. Park, B.S., Yoo, S.J., Park, J.-B., & Choi, Y.-H. (2010). A simple adaptive control approach for trajectory tracking of electrically driven nonholonomic mobile robots. IEEE Transactions on Control Systems Technology, Vol. 18, No. 5, pp. 1199-1206, doi: 10.1109/TCST.2009.2034639.         [ Links ]

14. López-Franco, M., Salome-Baylon, A., Alanis, A.Y., & Arana- Daniel, N. (2011). Discrete super twisting control algorithm for the nonholonomic mobile robots tracking problem. 8th International Conference on Electrical Engineering Computing Science and Automatic Control (CCE), pp. 1 -5, doi: 10.1109/ICEEE.2011.6106692.         [ Links ]

15. Arana-Daniel, N., Rosales-Ochoa, R., & López-Franco, C. (2011). Reinforced slam for path planning and mapping in dynamic environments. 8th International Conference on Electrical Engineering Computing Science and Automatic Control (CCE), pp. 1-6, doi: 10.1109/ICEEE.2011.6106563.         [ Links ]

16. Sutton, R.S. & Barto, A.G. (1998). Reinforcement Learning: An Introduction. MIT Press.         [ Links ]

17. Watkins, C.J.C.H. & Dayan, P. (1992). Q-learning. Machine Learning, Vol. 8, No. 3, pp. 279-292, doi: 10.1007/BF00992698.         [ Links ]

18. Smart, W. & Kaelbling, L. (2002). Effective reinforcement learning for mobile robots. IEEE International Conference on Robotics and Automation, Vol. 4, pp. 3404-3410, doi: 10.1109/ROBOT.2002.1014237.         [ Links ]

19. Andrade-Cetto, J. & Sanfeliu, A. (2003). Temporal landmark validation in cml. IEEE Int. Conf. Robot. Automat., pp. 1576-1581, doi: 10.1109/ROBOT.2003.1241819.         [ Links ]

20. Davison, A.J. (1998). Mobile Robot Navigation Using Active Vision. PhD thesis, Univ. of Oxford.         [ Links ]

21. Davison, A.J. (2001). 3d simultaneous localization and map-building using active vision for a robot moving on undulating terrain. IEEE Conf. Comput. Vision Pattern Recognition, pp. 384-391, doi: 10.1109/CVPR.2001.990501.         [ Links ]

22. Grisetti, G., Grzonka, S., Stachniss, C., Pfaff, P., & Burgard, W. (2007). Efficient estimation of accurate maximum likelihood maps in 3D. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 3472-3478, doi: 10.1109/IROS.2007.4399030.         [ Links ]

23. Watkins, C.J.C.H. (1989). Learning from delayed rewards. Ph.D. dissertation, King's College, Cambridge, UK.         [ Links ]

24. Huang, S., Wang, Z., & Dissanayake, G. (2004). Time optimal robot motion control in simultaneous localization and map building (slam) problem. IEEE/RSJ International Conference on Intelligent Robots and Systems, 3, pp. 3110-3115, doi: 10.1109/IROS.2004.1389884.         [ Links ]

25. Garulli, A., Giannitrapani, A., Rossi, A., & Vicino, A. (2005). Mobile robot slam for line-based environment representation. European Decision and Control Conference, pp. 2041-2046, doi: 10.1109/CDC.2005.1582461.         [ Links ]

26. Montemerlo, M., Thrun, S., Koller, D., & Wegbreit, B. (2002). Fastslam: A factored solution to the simultaneous localization and mapping problem. AAAI National Conference on Artificial Intelligence, pp. 593-598.         [ Links ]

27. Viñuela P. & León, I. (2004). Redes de neuronas artificiales: un enfoque práctico. Pearson Education-Prentice Hall.         [ Links ]

28. Ricardo, V.G., (1999). Control de sistemas mediante redes neuronales, aprendizaje por refuerzo. Master's thesis, Universidad Carlos III de Madrid, Madrid.         [ Links ]

29. Narendra, K. & Parthasarathy, K. (1990). Identification and control of dynamical systems using neural networks. IEEE Transactions on Neural Networks, Vol. 1, No. 1, pp. 4-27, doi: 10.1109/72.80202.         [ Links ]

30. Rovithakis, G. & Christodoulou, M. (2000). Adaptative Control with Recurrent High-order Neural Networks: Theory and Industrial Applications. Advances in Industrial Control. Springer Verlag.         [ Links ]

31. Qbot (2014). Quanser qbot: User manual. Number 830, revision 7,         [ Links ]

32. López-Franco, C., López-Franco, M., Alanis, A. Y., Gómez-Avila, J. & Arana-Daniel, N. (2014). Real-time inverse optimal neural control for image based visual servoing with nonholonomic mobile robots. Mathematical Problems in Engineering, pp. 1-13, doi: 10.1155/2015/347410.         [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License