SciELO - Scientific Electronic Library Online

 
vol.19 issue2Design of a General Purpose 8-bit RISC Processor for Computer Architecture LearningPID Control Law for Trajectory Tracking Error Using Time-Delay Adaptive Neural Networks for Chaos Synchronization author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Computación y Sistemas

Print version ISSN 1405-5546

Comp. y Sist. vol.19 n.2 México Apr./Jun. 2015

http://dx.doi.org/10.13053/CyS-19-2-1579 

Artículos

 

Índice para la identificación de fuentes armónicas en sistemas eléctricos de potencia empleando estimación de estado con error en las mediciones

 

Identification of Harmonic Sources in Electrical Power Systems Using State Estimation with Measurement Error

 

Luis Alberto Hernández Armenta, David Romero Romero, Jaime Robles García

 

Instituto Politécnico Nacional, Departamento de Ingeniería Eléctrica, Sección de Estudios de Posgrado e Investigación, Distrito Federal, México. gorson1@hotmail.com, dromero@ieee.org, jarobles@ipn.mx

Autor de correspondencia es Luis A. Hernández Armenta.

 

Artículo recibido el 17/10/2013.
Aceptado el 01/12/2014.

 

Resumen

En este artículo se muestra que la Distorsión Armónica Total (THD) de la corriente es un índice confiable para identificar la ubicación de las fuentes armónicas en una red de potencia. Se prueba que los estimadores de armónicas fallan al identificar fuentes de armónicas al tener error en las mediciones. Se presenta un sistema de 14 nodos con dos fuentes de armónicas resuelto con dos métodos.

Palabras clave: THD, fuentes de armónicas, estimación de estado, método de inyecciones de corriente armónica, estimador de armónicas.

 

Abstract

In this article we show that the Total Harmonic Distortion (THD) of the current is a reliable index to identify the location of harmonic sources in a power system. It is proved that the harmonic estimators fail to identify harmonic source measurement errors. A 14 node system with two sources of harmonic solved by two methods is tested.

Keywords: THD, harmonic sources, state estimation, harmonic current injection method, harmonic state estimation.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Agradecimientos

Agradecemos a los revisores de este artículo por sus valiosos comentarios que han mejorado este trabajo.

 

Referencias

1. Heydt, G.T. (1989). Identification of Harmonic Sources by a State Estimation Technique. Transaction on Power Delivery, IEEE, Vol. 4, No. 1, pp. 569-576. DOI: 10.1109/ICSPC.2007.4728416        [ Links ]

2. Nguyen, H.T., Yang, J.J., & Choi, S.S. (2010). On Harmonic State Estimation and the Evaluation of Harmonic Power Contribution from Sources. Power and Energy Society Meeting, IEEE. DOI: 10.1109/PES.2010.5589637        [ Links ]

3. Du, Z.P., Arrillaga, J., Watson, N.R., & Chen, S. (1999). Identification of Harmonic Sources of Power Systems Using State Estimation. Proceedings Generation Transmission and. Distribution, IEEE, Vol. 146, No. 1, pp. 7-12. DOI: 10.1049/ip.gtd:19990061        [ Links ]

4. Sakis, A.P., Zhang, F., & Zelingher, S. (1994). Power System Harmonic State Estimation. Transactions on Power Delivery, IEEE, Vol. 9, No. 3, pp. 1701-1709. DOI: 10.1109/61.311191        [ Links ]

5. Lobos, T., Kozina, T., & Koglin, H.J. (1999). Power System Harmonic State Estimation Using Linear Least Square Method and SVD. Proceedings Generation Transmission and Distribution, IEEE, Vol. 148, No. 6, pp. 567-572. DOI: 10.1049/ip-gtd:20010563        [ Links ]

6. Zhang, Y., Xu, Y., & Xu, Y. (2011). Research on Power System Harmonic State Estimation. International Conference on Power System Technology, IEEE. DOI: 10.1109/DRPT.2011.5993962        [ Links ]

7. Liao, H. (2007). Power System Harmonic State Estimation and Observability Analysis via Sparsity Maximization. Transactions on Power Systems, IEEE, Vol. 22, No. 1, pp. 15-23. DOI:10.1109/TPWRS.2006.887957        [ Links ]

8. Hou, S., Xu, Z., Lv., H., Jiang Z., & Wang, L. (2006). Research into Harmonic State Estimation in Power System Based on PMU and SVD. International Conference on Power System Technology, IEEE. DOI: 10.1109/ICPST.2006.321871        [ Links ]

9. Moghadasian, M., Mokhtari, H., & Baladi, A. (2010). Power System Harmonic State Estimation Using WLS and SVD; A practical Approach. 14th International Conference on Harmonics and Quality of Power, IEEE. DOI:10.1109/ICHQP.2010.5625307        [ Links ]

10. Kanao, N., Yamashita, M., Yanagida, H., & Muzykami, M. (2005). Power System Harmonic Analysis Using State-Estimation Method for Japanese Field Data. Transactions on Power Delivery, IEEE, Vol. 2, No. 2, pp. 970-977. DOI: 10.1109/TPWRD.2004.838632        [ Links ]

11. Kent, K.C., Neville, R.W., & Arrillaga, J. (2005). Error Analysis in Static Harmonic State Estimation: A Statistical Approach. Transactions on Power Delivery, IEEE, Vol. 20, No. 2, pp. 1045-1050. DOI: 10.1109/ICSPC.2007.4728416        [ Links ]

12. Kumar, A., Das, B., & Sharma, J. (2004). Determination of location of Multiple Harmonic Sources in a Power System. Electric Power Delivery Systems, Vol. 26, pp. 73-78.         [ Links ]

13. Jain, S.K. & Singh, S.N. (2011). Harmonic Estimation in Emerging Power Systems: Key Issues and Challenges. Electric Power System Research, Vol. 81, pp. 1754-1756.         [ Links ]

14. Hernández, L.A. (2012). Identificación de Fuentes Armónicas por Métodos de Estimación en Sistemas Eléctricos de Potencia. Tesis, SEPI-ESIME Zacatenco, IPN.         [ Links ]

15. Arruda, F.E., Nagan, N., & Ribeiro, P.F. (2010). Three-phase Harmonic Distortion State Estimation Algorithm Based on Evolutionary Estrategies. Electric Power System Research, Vol. 80, pp. 1024-1032.         [ Links ]

16. Dag, O., Uçac, E., & Usta, Ö. (2012). Harmonic Source Location and meter placement optimization by impedance network approach. Elect. Eng., Vol. 94, pp. 1-10.         [ Links ]

17. Rakpenthai, C., Uatrongjit, S., Watson, N.R., & Premrudeepreechacharn, S. (2013). On Harmonic State Estimation of Power System with Uncertain Network Parameters. Transaction on Power Systems, IEEE, Vol. 28, No. 4, pp. 4829-4838.         [ Links ]

18. Gursor, E. & Niebur, D. (2009). Harmonic Load Identification Using Complex Independent Component Analysis. Transactions on Power Delivery, IEEE, Vol. 24, No. 1, pp. 285-292.         [ Links ]

19. D'Antona, G., Muscas, C., & Sulis, S. (2011). Localization of Nonlinear Loads in Electric Systems through Harmonic Source Estimation. Transactions on instrumentation and measurements, IEEE, Vol. 60, No. 10.         [ Links ]

20. Mahmoud, A.A. & Schultz, R.D. (1982). A Method for Analyzing Harmonic Distribution in A.C. Power Systems. Transactions on Power Apparatus and Systems, IEEE, Vol. PAS-101, No. 6, pp. 1815-1824.         [ Links ]

21. IEEE STD 519-1992 (1993). IEEE Recommended Practices and Requirements for Harmonic Control in Electrical Power Systems.         [ Links ]

22. Task Force on Harmonic Modeling and Simulation (1996). Modeling and Simulation of the Propagation of Harmonics in Electric Power Networks. Transactions on Power Delivery, IEEE, Vol. 11, No. 1, pp 452-465.         [ Links ]

23. Moore, R.H (1920). On the reciprocal of the general algebraic matrix. Bulletin of the American Mathematical Society, Vol. 26, pp. 394-395.         [ Links ]

24. Penrose, R. (1955). A generalized inverse for the matrices. Proceedings of the Cambridge Philosophical Society, Vol. 51, pp. 406-413.         [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License