SciELO - Scientific Electronic Library Online

 
vol.19 issue1Times of Execution of the Quantum NOT Gate Operating on One of Two Interacting QubitsDisturbance Rejection Using SPR0 Substitutions author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Computación y Sistemas

Print version ISSN 1405-5546

Comp. y Sist. vol.19 n.1 México Jan./Mar. 2015

http://dx.doi.org/10.13053/CyS-19-1-1549 

Artículos

 

FPGA-Based Emulation of a Synchronous Phase-Coded Quantum Cryptography System

 

Arturo Arvizu-Mondragón1, Josué A. López-Leyva2, Jorge L. Ureña1, Francisco J. Mendieta-Jiménez3 and Juan de Dios Sánchez L.4

 

1 Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Baja California, México. arvizu@cicese.mx, sluc16@hotmail.com.

2 CETYS Universidad, Ensenada, Baja California, México. josue.lopez@cetys.mx.

3 Agencia Espacial Mexicana (AEM), Distrito Federal, México. mendieta.javier@aem.gob.mx.

4 Universidad Autónoma de Baja California (UABC), Ensenada, Baja California, México. jddios@uabc.edu.mx.

Corresponding author is Arturo Arvizu Mondragón.

 

Article received on 30/08/2013.
Accepted on 19/08/2014.

 

Abstract

We present FPGA-based emulation of a synchronous phase-coded quantum cryptography system. Several of the emulated subsystems are used for implementation in a free space demonstrative QPSK scheme for quantum key distribution with continuous variables (CV-QKD) using a base and optical phase synchronization. The CV-QKD systems are commonly implemented using QPSK modulation with switched or simultaneous detection. In this paper we only make use of one base of the QPSK system in order to get a simpler modulation (BPSK) scheme, used for demonstrative purposes. The reported results from the emulation and the experiment in terms of Quantum Bit Error Rate (QBER) and mutual information for different values of the number of photons per bit are in good agreement.

Keywords: FPGA, quantum cryptography, emulation.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

References

1. Gao, F., Qin, S.J., Guo, F.Z., & Wen, Q.Y. (2011). Dense-Coding Attack on Three-Party Quantum Key Distribution Protocols. IEEE Journal of Quantum Electronics, Vol. 47, No. 5, pp. 630-635.         [ Links ]

2. Yan, Z., Meyer-Scott, E., Bourgoin, J.P., Higgins, B.L., Gigov, N., MacDonald, A., Hübel, H., & Jennewein, T. (2013). Novel High-Speed Polarization Source for Decoy-State BB84 Quantum Key Distribution Over Free Space and Satellite Links, Journal of ligthwave technology, Vol. 31, No. 9, pp. 1399-1408. DOI: 10.1109/JLT.2013.2249040.         [ Links ]

3. Huang, J., Yin, Z., Chen, W., Wang, S., Li, H., Guo, G., & Han, Z. (2013). A survey on device-independent quantum communications. China Communications, Vol.10, No. 2, pp. 1-10. DOI:10.1109/CC.2013.6472853.         [ Links ]

4. Agnolini, S. & Gallion, P. (2004). Implementation of BB84 protocol by QPSK modulation using Mach-Zehnder modulator. IEEE ICIT '04 International Conference on Industrial Technology. Vol. 1, pp. 250-253. DOI: 10.1109/ICIT.2004.1490292.         [ Links ]

5. Liao, S., Liu, S., Wang, J., Liu, W., Peng, C., & An, Q. (2012). Time interval analyzer with FPGA-based TDC for free space quantum key distribution: Principle and validation with prototype setup. Real Time Conference (RT), 18th IEEE-NPSS, 1-6.         [ Links ]

6. Zhang, H.F., Wang, J., Cui, K., Luo, C.L., Lin, S.Z., Zhou, L., Liang, H., Chen, T.Y., Chen, K., & Pan, J.W. (2012). A Real-Time QKD System Based on FPGA. Journal of ligthwave technology, Vol. 30, No. 20, pp. 3226-3234. DOI:10.1109/JLT.2012.2217394.         [ Links ]

7. Oesterling, L., Hayford, D., & Friend, G. (2012). Comparison of commercial and next generation quantum key distribution: Technologies for secure communication of information. IEEE Conference on Technologies for Homeland Security (HST), pp. 156-161.         [ Links ]

8. Trappe, W. & Washington, L.C. (2002). Introduction to Cryptography with Coding Theory. Pearson Prentice Hall. pp. 25-50.         [ Links ]

9. Bennett, C. & Brassard, G. (1984). Quantum cryptography: Public key distribution and coin tossing. Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, pp. 175-179.         [ Links ]

10. Silva, M.B.C, Xu, Q., Agnolini, S., Gallion, P., & Mendieta, F.J. (2006). Homodyne detection for quantum key distribution: an alternative to photon counting in BB84 protocol, International Conference on Application of Photonic Technology.         [ Links ]

11. Jouguet, P., & Kunz-Jacques, S. (2014). High Performance error correction for quantum key distribution using polar codes. Quantum information and computation, Vol. 14, No. 3, pp. 329-338.         [ Links ]

12. Lopez Leyva, J.A. (2014). Dual Quantum Random Number Generator using a FPGA for QKD-CV systems: Preliminary results. International Journal of Emerging Research in Management & Technology, Vol. 3, No. 6, pp. 6-8.         [ Links ]

13. Desurvire, E. (2009). Classical and quantum information theory. Cambridge, UK, Cambridge University Press.         [ Links ]

14. Al-Khateeb, W., Al-Khateeb, K., Ahmad, N.E., & Salleh, S.N.M. (2013). Practical Considerations on Quantum Key Distribution (QKD). International Conference on Advanced Computer Science Applications and Technologies (ACSAT), pp. 278-283 DOI:10.1109/ACSAT.2013.62.         [ Links ]

15. Capraro, I. & Occhipinti, T. (2007). Implementation of a Real Time High Level Protocol Software for Quantum Key Distribution. IEEE International Conference on Signal Processing and Communications ICSPC, pp. 704-707. DOI:10.1109/ICSPC.2007.4728416.         [ Links ]

16. Niemiec, M. & Pach, A.R. (2013). Management of security in quantum cryptography. IEEE Communications Magazine, Vol. 51, No. 8, pp. 3641. DOI:10.1109/MCOM.2013.6576336.         [ Links ]

17. Xu, Q., Mondragon, A.A., Gallion, P., & Mendieta, F.J. (2009). Homodyne In-Phase and Quadrature Detection of Weak Coherent States With Carrier Phase Tracking. IEEE Journal of Selected Topics in Quantum Electronics, Vol. 15, No. 6, pp. 581-1590. DOI:10.1109/JSTQE.2009.2023803.         [ Links ]

18. Li, J., Chen, J., Zeng, H., & Li, H. (2013). Design of Quantum Secure Communication System Based on FPGA. Progress in Electromagnetics Research Symposium (PIERS) Proceedings, Taipei, pp. 342-346.         [ Links ]

19. Shen, Q., Liao, S., Wang, J., Liu, W., Peng, C., & An, Q. (2013). An FPGA-Based TDC for Free Space Quantum Key Distribution, IEEE Transactions on Nuclear Science, Vol. 60, No. 5, pp. 3570-3577. DOI:10.1109/TNS.2013.2280169.         [ Links ]

20. Ma, L., Mink, A., & Tang, X. (2009). High Speed Quantum Key Distribution Over Optical Fiber Network System. Journal of Research of the National Institute of Standards and Technology, Vol. 144, No. 3, pp. 149-177.         [ Links ]

21. Khalid, A.U., Zilic, Z., & Radecka, K. (2004). FPGA Emulation of Quantum Circuits. Proceedings of the IEEE Intl. Conf. on Computer Design, San Jose California, USA, pp. 310-315.         [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License