SciELO - Scientific Electronic Library Online

vol.19 issue1An Approach for Prototype Generation based on Similarity Relations for Problems of ClassificationEvaluation of Ontological Relations in Corpora of Restricted Domain author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand




Related links

  • Have no similar articlesSimilars in SciELO


Computación y Sistemas

Print version ISSN 1405-5546

Comp. y Sist. vol.19 n.1 México Jan./Mar. 2015 



Arabic Dialogue System for Hotel Reservation based on Natural Language Processing Techniques


Asma Moubaiddin1, Ola Shalbak2, Bassam Hammo2 and Nadim Obeid2


1 Department of Linguistics, The University of Jordan, Amman, Jordan. a.mobaiddin@ju.edujo.

2 KASIT, CIS Department, The University of Jordan, Amman, Jordan. o.shalbak@ju.edujo, b.hammo@ju.edujo, nadim@ju.edujo.

Corresponding author is Asma Moubaiddin.


Article received on 14/04/2014.
Accepted on 23/01/2015.



In this paper, we present an Arabic dialogue system (also referred to as a conversational agent) intended to interact with hotel customers and generate responses about reserving a hotel room and other services. The system uses text-based natural language dialogue to navigate customers to the desired answers. We describe the two main modules used in our system: the parser and the dialogue manager. The parser is based on the Government and Binding theory. Customers can inquire about room availability, hotel services and negotiate a desired reservation. We report an experiment with 500 volunteers unfamiliar with the system in a real environment. The users were asked to interact with the system and then to judge the dialogues as "very bad," "bad," "neutral," "good," or "very good." We found that 66.92% of the dialogues were judged to be "very good" and 92.3% were judged to be "good" or "very good". These results confirm the viability of using an Arabic dialogue system to tackle the problem of interactive Arabic dialogues. Finally, we discuss future directions for enhancing our dialogue system with more sophisticated and intuitive interaction.

Keywords: Dialogue system, conversational agent, computational linguistics, Arabic parser, government and binding theory.





1. Allen, J., Byron, D., Dzikovska, M., Ferguson, G., Galescu, L., & Stent, A. (2000). An architecture for a generic dialogue shell. Natural Language Engineering, Vol. 6, No. 34, pp. 213-228.         [ Links ]

2. Aust, H., Oerder, M., Seide, F., & Steinbiss, V. (1995). A spoken language inquiry system for automatic train timetable information. Philips Journal of Research, Vol. 49, No. 4, pp. 399-418.         [ Links ]

3. Black, C. (1999). A step-by-step introduction to the government and binding theory of syntax. SIL - Mexico Branch and University of North Dakota.         [ Links ]

4. Bohus, D. & Rudnicky, A. (2009). The RavenClaw dialog management framework: Architecture and systems. Computer Speech and Language, Vol. 23, No. 3, pp. 332-361.         [ Links ]

5. Boye, J. (2007). Dialogue management for automatic troubleshooting and other problem-solving applications. Proceeding of the 8th SIGdial Workshop on Discourse and Dialogue, pp. 247-255.         [ Links ]

6. Btoosh, M. (2010). Wh-movement in standard Arabic: an optimality-theoretic account. Poznan Studies in Contemporary Linguistics, Vol. 46, No.1, pp. 1-26.         [ Links ]

7. Chai, J., Horvath, V., Nicolov, N., Stys, M., Kambhatla, N., Zadrozny, W., & Melville, P. (2002). Natural language assistant: A dialog system for online product recommendation. AI Magazine, Vol. 23, No. 2, pp. 63-75.         [ Links ]

8. Cuayáhuitl, H., Dethlefs, N., Richter, K.F., Tenbrink, T., & Bateman, J. (2010). A dialogue system for indoor wayfinding using text-based natural language. Journal of Computational Linguistics and Applications, Vol. 1, pp. 285-304.         [ Links ]

9. Fraser, N. (1995). Messy data, what can we learn from it? Proc. of 9th Twente workshop on Language technology: Corpus-based approaches to dialogue modelling, pp. 95-105.         [ Links ]

10. Gibbon, D., Moore, R., & Winski, R. (Eds.) (1997). Handbook of standards and resources for spoken language systems. Spoken Language System Assessment, 3, Mouton De Gruyter.         [ Links ]

11. Habash, N., Reem, F., & Ryan, R. (2009). Syntactic annotation in the Columbia Arabic treebank. Proceedings of the 2nd International Conference on Arabic Language Resources and Tools (MEDAR), Egypt, pp. 125-132.         [ Links ]

12. Haegeman, L. (1991). Introduction to government and binding theory, Blackwell.         [ Links ]

13. Hammo, B., Moubaiddin, A., Obeid, N., & Tuffaha, A. (2014). Understanding Arabic syntactic structure in light of the government and binding theory. Proceedings of CICLing 2014, 15th International Conference on Intelligent Text Processing and Computational Linguistics, Kathmandu, Nepal.         [ Links ]

14. Hammo, B., Moubaiddin, A., Obeid, N., & Tuffaha, A. (2014). Formal description of Arabic syntactic structure in the framework of the government and binding theory. Computación y Sistemas, Vol. 18, No. 3, pp. 611-625.         [ Links ]

15. Homeidi, M. (2003). The notion of governor in modern standard Arabic (MSA) and English: A contrastive perspective. J. King Saud Univ., Vol. 15, pp. 49-62.         [ Links ]

16. Hulstijn, J., Steetskamp, R., ter Doest, H.W.L., van de Burgt, S.P., & Nijholt, A. (1996). Topics in SCHISMA dialogues. Proceedings of the Twente Workshop on Language Technology: Dialogue Management in Natural Language Systems, pp. 89-99.         [ Links ]

17. Jurafsky, D. & Martin, J. H. (2009). Speech and language processing (Chapter 19, Dialogue and Conversational Agents). Pearson International Edition.         [ Links ]

18. Kamm, C., Walker, M.A., & Litman, D. (1999). Evaluating spoken language systems. Proceedings of American Voice Input/Output Society (AVIOS).         [ Links ]

19. Komatani, K., Kanda, N., Nakano, M., Nakadai, K., Tsujino, H., Ogata, T., & Okuno, H.G. (2006). Multi-domain spoken dialogue system with extensibility and robustness against speech recognition errors. Proceedings of the 7th SIGdial Workshop on Discourse and Dialogue, pp. 9-17.         [ Links ]

20. Lamel, L., Rosset, S., Gauvain, J.L., & Bennacef, S. (1999). The LIMSI ARISE system for train travel information. Proceedings of the IEEE international Conference on Acoustics, Speech and Signal Processing, pp. 501-504.         [ Links ]

21. Larsson, S. & Ericsson, S. (2002). GoDiS - issue-based dialogue management in a multi-domain, multi-language dialogue system. Proceedings of the ACL-02 Demonstrations Session, pp. 104-105.         [ Links ]

22. Lemon, O., Gruenstein, A., & Peters, S. (2002). Multi-tasking and collaborative activities in dialogue systems. Proceedings of the SIGDIAL Workshop on Discourse and Dialogue, pp. 113-124.         [ Links ]

23. Martínez-Miranda, J., Aldea, A., & Bañares-Alcántara, R. (2004). Agent Based Simulation in the Selection of Work Teams. Computación y Sistemas, Vol. 7, No. 3, pp. 210-223.         [ Links ]

24. McTear, M. (1998). Modelling spoken dialogues with state transition diagrams: Experience of the CSLU toolkit. Proceedings of the International Conference on Spoken Language Processing, pp. 1223-1226.         [ Links ]

25. Moubaiddin, A., Tuffaha, A., Hammo, B., & Obeid, N. (2013). Investigating the syntactic structure of Arabic sentences. Proceedings of Communications, Signal Processing, and their Applications, IEEE, pp. 1 -6.         [ Links ]

26. Pakucs, B. (2003). Towards dynamic multi-domain dialogue processing. Proceedings of the European Conference on Speech, Communication and Technology, pp. 741-744.         [ Links ]

27. Pellom, B., Ward, W., Hansen, J., Cole, R., Hacioglu, K., Zhang, J., Yu, X., & Pradhan, S. (2001). University of Colorado dialog systems for travel and navigation. Proceedings of the first international conference on Human language technology research (HLT), Association for Computational Linguistics, Stroudsburg, PA, USA, pp. 1-6.         [ Links ]

28. Shala, L., Rus, V., & Graesser, A.C. (2010). Automated speech act classification in Arabic. Subjetividad y Procesos Cognitivos, Vol. 14, 284-292.         [ Links ]

29. Sporka, A., Franc, J., & Riccardi, G. (2009). Can machines call people? User experience while answering telephone calls initiated by machine. Proceedings of the 27th international conference extended abstracts on Human factors in computing systems (CHI EA '09), ACM, New York, NY, USA, pp. 3625-3630.         [ Links ]

30. Tounsi, L. & Genabith, J.V. (2010). Arabic Parsing Using Grammar Transforms. Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC), Valletta, Malta, pp. 1986-1989.         [ Links ]

31. Walker, M.A., Aberdeen, J.S., Boland, J.E., Bratt, E.O., Garofolo, J.S., Hirschman, L., & Whittaker, S. (2001). DARPA communicator dialog travel planning systems. Proceedings of the European Conference on Speech, Communication and Technology, pp. 1371 -1374.         [ Links ]

32. Young, S.R. (1989). Evaluation techniques for spoken language systems. ESCA Tutorial and Research Workshop on Speech Input/Output Assessment and Speech Databases, Vol. 2, pp. 219-222.         [ Links ]

33. Zue, V., Seneff, S., Glass, J.R., Polifroni, J., Pao, C., Hazen, T.J., & Hetherington, L. (2000). JUPITER: a telephone-based conversational interface for weather information. IEEE Transactions on Audio, Speech, and Language Processing, Vol. 8, No. 1, pp. 85-96.         [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License