SciELO - Scientific Electronic Library Online

vol.19 issue1Finding Pure Nash Equilibrium for the Resource-Constrained Project Scheduling ProblemRandomized Algorithm based on Sliding Distributions for the Scheduling Problem in Grid Systems author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand




Related links

  • Have no similar articlesSimilars in SciELO


Computación y Sistemas

Print version ISSN 1405-5546

Comp. y Sist. vol.19 n.1 México Jan./Mar. 2015 



Saving Time for Object Finding with a Mobile Manipulator Robot in 3D Environment


Judith Espinoza and Rafael Murrieta-Cid


Centro de Investigación en Matemáticas, CIMAT, Guanajuato, México.,

Corresponding author is Rafael Murrieta-Cid.


Article received on 12/11/2013.
Accepted on 01/09/2014.



In this paper, we address the problem of reducing the time for finding an object. We consider both the time taken by our software to generate a search plan and the expected time to find the object when the plan is executed. The object is sought with a 7 degree of freedom mobile manipulator robot with an "eye-in-hand" sensor. The sensor is limited in both range and field of view. We propose two main strategies: 1) to coordinate the motion of robot's degrees of freedom optimizing only those most relevant for the task, and 2) to repair a previously computed plan whenever the environment changes locally. We have implemented all our algorithms and present simulation results in realistic environments.

Keywords: Search, path planning, 3D visibility, 3D coverage.





This work was partially funded by CONACYT Project 106475 and by the NSF-CONACYT Project J110.534/2006.



1. Acar, E., Choset, H., & Atkar, P. N. (2001). Complete sensor-based coverage with extended-range detectors: A hierarchical decomposition in terms of critical points and voronoi diagrams. Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, IEEE/RSJ-IROS 2001, IEEE, pp. 1305-1311.         [ Links ]

2. Bourgault, F., Goktogan, A., Furukawa, T., & Durrant-White, H. (2004). Coordinated search for a lost target in a bayesian world. Advanced Robotics, Vol. 18, No. 10, pp. 979-1000.         [ Links ]

3. Espinoza, J. & Murrieta-Cid, R. (2010). A motion planner for finding an object in 3d environments with a mobile manipulator robot equipped with a limited sensor. In Lecture Notes in Computer Science, IBERAMIA-2010, volume 6433. pp. 532-541.         [ Links ]

4. Espinoza, J. & Murrieta-Cid, R. (2011). Repairing plans for object finding in 3-d environments. Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, IROS 2011, IEEE, pp. 4528-4535.         [ Links ]

5. Espinoza, J., Sarmiento, A., Murrieta-Cid, R., & Hutchinson, S. (2011). Motion planning strategy for finding an object with a mobile manipulator in 3-d environments. Advanced Robotics, Vol. 25, No. 1314, pp. 1627-1650.         [ Links ]

6. Gonzalez, H. & Latombe, J.-C. (2001). A randomized art-gallery algorithm for sensor placement. Proc. 17th ACM Symp. on Computational Geometry (SoCG'01), ACM, pp. 232-240.         [ Links ]

7. Hert, S., Tiwari, S., & Lumelsky, V. (1996). A terrain-covering algorithm for an auv. Autonomous Robots, Vol. 3, No. 2-3, pp. 91-119.         [ Links ]

8. Hsu, D., Latombe, J., & Motwani, R. (1997). Path planning in expansive configuration spaces. Proc. IEEE Int. Conf. on Robotics and Automation, IEEE-ICRA 1997, IEEE, pp. 2719-2726.         [ Links ]

9. Kavraki, L. E., Svestka, P., Latombe, J., & Overmars, M. H. (1996). Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Transactions on Robotics and Automation, Vol. 12, No. 4, pp. 566-580.         [ Links ]

10. Kroger, T. & Wahl, F. M. (2010). Online trajectory generation: Basic concepts for instantaneous reactions to unforeseen events. IEEE Transactions on Robotics, Vol. 26, No. 1, pp. 94-111.         [ Links ]

11. Latombe, J. C. (1991). Robot motion planning. Kluwer.         [ Links ]

12. Lau, H., Huang, S., & Dissanayake, G. (2005). Optimal search for multiple targets in a built environment. Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, IEEE/RSJ-IROS 2005, IEEE, pp. 3740-3745.         [ Links ]

13. LaValle, S. (2006). Planning Algorithms. Cambridge University Press.         [ Links ]

14. LaValle, S. M. & Kuffner, J. J. (2001). Randomized kinodynamic planning. International Journal of Robotics Research, Vol. 20, No. 5, pp. 378-400.         [ Links ]

15. O'Rourke, J. (1982). The complexity of computing minimum convex covers for polygons. 20th Annu. Allerton Conf. on Communication, Control, and Computing, pp. 75-84.         [ Links ]

16. O'Rourke, J. (1987). Art Gallery Theorems and Algorithms. Oxford University Press.         [ Links ]

17. Rodriguez-Sanchez, A. J., Simine, E., & Tsotsos, J. K. (2007). Attention and visual search. Int. J. Neural Syst, Vol. 17, No. 4, pp. 277-288.         [ Links ]

18. Sanchez, G. & Latombe, J. (2002). On the delaying collision cheching in prm planning. International Journal of Robotics Research, Vol. 21, No. 1, pp. 526.         [ Links ]

19. Sanchez, G. & Latombe, J. (2003). A single-query bi-directional probabilistic roadmap planner with lazy collision checking. In Jarvis, R. & Zelin-sky, A., editors, ISRR'01. STAR, Springer-Verlag, Berlin, pp. 403-417.         [ Links ]

20. Sarmiento, A., Murrieta-Cid, R., & Hutchinson, S. (2005). A sample-based convex cover for rapidly finding an object in a 3-d environment. Proc. IEEE Int. Conf. on Robotics and Automation, IEEE-ICRA 2005, IEEE, pp. 3486-3491.         [ Links ]

21. Sarmiento, A., Murrieta-Cid, R., & Hutchinson, S. A. (2009). An efficient motion strategy to compute expected-time locally optimal continuous search paths in known environments. Advanced Robotics, Vol. 23, No. 12-13, pp. 1533-1569.         [ Links ]

22. Shemer, T. (1992). Recent results in art galleries. Proc. IEEE, Vol. 80, No. 9, pp. 1384-1399.         [ Links ]

23. Simeon, T., Laumond, J. P., & Nissoux, C. (2000). Visibility based probabilistic roadmaps. Advanced Robotics, Vol. 14, No. 6, pp. 477-493.         [ Links ]

24. Vannoy, J. & Xiao, J. (2008). Real-time adaptive motion planning (ramp) of mobile manipulators in dynamic environments with unforeseen changes. IEEE Transactions on Robotics, Vol. 24, No. 5, pp. 1199-1212.         [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License